# Trouble Shooting Guide Book





# Contents

## THERMAV

## **Trouble Shooting Guide Book**

### I. Introduction

| 1. | Nomenclature              |
|----|---------------------------|
| 2. | Piping Diagram            |
| 3. | Wiring Diagram            |
| 4. | Outdoor PCB               |
| 5. | Indoor PCB                |
| 6. | Exploded View & Part list |

## II. Self-Diagnosis

| 1. Indoor                  | 022 |
|----------------------------|-----|
| 2. OutDoor                 | 058 |
| 3. Sensor Resistance Table | 097 |

## III. Function

| 1. List of Function          | 100 |
|------------------------------|-----|
| 2. Remote Controller feature | 102 |
| 3. Special Function          | 104 |
| 4. Installer Setting         | 106 |

## IV. Outdoor Unit Control

| 1. Basic Control      | 116 |
|-----------------------|-----|
| 2. Special Control    | 118 |
| 3. Protection Control | 120 |
| 4. Other Control      | 122 |

## V. Test Run Check

014

016

| 1. Checking list of Initial Installation | 128 |
|------------------------------------------|-----|
| 2. DIP Switch Setting                    | 131 |

### VI. Checking Key Components of Unit

| I. The Phenomena from main Component |     |
|--------------------------------------|-----|
| Failure                              | 140 |
| 2. Flow Switch                       | 141 |
| 3. Compressor                        | 142 |
| 4. Fan Motor                         | 143 |
| 5. Electronic Expansion Valve        | 144 |
|                                      |     |

147

## VII. Replacement

6. Inverter IPM Checking Method

| 1. Replacement Procedure for Compressor  | 150 |
|------------------------------------------|-----|
| 2. Replacement Procedure for INVE PCB    | 151 |
| 3. Caution for Assembling Outdoor panels |     |
| after Test Run                           | 152 |

## THERMAV

| 1. Nomenclature              | 006 |
|------------------------------|-----|
| 2. Piping Diagra             | 008 |
| 3. Wiring Diagram            | 010 |
| 4. Outdoor PCB               | 012 |
| 5. Indoor PCB                | 014 |
| 6. Exploded View & Part list | 016 |



## 1. Nomenclature

#### Indoor Unit

#### Global Model Name



### Outdoor Unit

Global Model Name



#### Europe Model Name



#### Europe Model Name



## 2. Piping Diagram

#### Indoor Unit (R-134a Cycle)



#### Outdoor Unit (R-410A Cycle)



## 3. Wiring Diagram

#### Indoor Unit





## 4. Outdoor PCB

#### Outdoor Unit (Main PCB)



#### Outdoor Unit (Inverter PCB)



#### Outdoor Unit (Noise Filter)



## 5. Indoor PCB

#### Indoor Unit (Main PCB)





#### Indoor Unit (Noise Filter)



## 6. Exploded View & Part list

#### Indoor Unit

**Control Box** 



#### Mechanical and Cycle Parts



| Location No. | Description                               | Housing Color |
|--------------|-------------------------------------------|---------------|
| 165000A      | High Pressure Sensor                      | Red           |
| 263230B      | Gas Side Temperature Sensor               | Red           |
| 263230C      | Water Inlet/Outlet Temperature Sensor     | Black         |
| 263230D      | Water Tank Temperature Sensor             | Red           |
| 263230E      | Inside Air Temperature Sensor             | White         |
| 263230F      | Suction/Discharge Pipe Temperature Sensor | Red           |

Function

#### Outdoor Unit

Control Box



Outdoor Unit

#### Mechanical Parts and Panels



## THERMAV

Cycle Parts



| Location No. | Description                                             | Housing Color |
|--------------|---------------------------------------------------------|---------------|
| 165010A      | High Pressure Switch                                    | Gray          |
| 165010B      | Low Pressure Sensor                                     | Blue          |
| 566000       | 566000 High Pressure Sensor                             |               |
| 263230A      | 263230A Liquid Pipe + Sub Cooler OUT Temperature Sensor |               |
| 263230B      | 263230B Inv. Discharge + HEX Temperature Sensor         |               |
| 263230C      | 263230C Air + Suction Pipe Temperature Sensor           |               |
| 561410A      | 561410A Reversing Valve Solenoid Coil                   |               |
| 561410B      | Hot Gas Solenoid Valve Coil                             | Green         |

## II. Self-Diagnosis

| 1, | Indoor                  | 022 |
|----|-------------------------|-----|
| 2. | OutDoor                 | 058 |
| 3. | Sensor Resistance Table | 097 |



#### Error Code Display

#### Concept of 'Classified Trouble'

#### · Definition of terms

- Trouble : a problem which can stop system operation, and can be resumed temporarily under limited operation without certificated professional's assist.
- Error : a problem which can stop system operation, and can be resumed ONLY after certificated professional's check.
- Emergency mode : temporary heating operation while system met Trouble

#### · Objective of introducing 'Trouble'

- Not like airconditioning product, Hydro Kit is generally operated in whole winter season without any system stopping.

- If system found some problem, which is not critical to system operating for yielding heating energy, the system can temporarily continue in emergency mode operation with enduser's decision.

#### · Classified Trouble

- Trouble is classified into two levels according to the seriousness of the problem : Slight Trouble and Heavy Trouble
- Slight Trouble : a problem is found inside the indoor unit. In most case, this trouble is concerned with sensor problems. The outdoor unit is operated under emergency mode operation condition which is configured by DIP switch No. 4 of the indoor unit PCB.
- Heavy Trouble : a problem is found inside the outdoor unit.
- Option Trouble : a problem is found for option operation such as water tank heating. In this trouble, the troubled option is assumed as if it is not installed at the system.

#### · Emergency operation is not automatically restarted after main electricity power is reset.

- In normal condition, the product operating information is restored and automatically restarted after main electricity power is reset.
- But in emergency operation, automatic re-start is prohibited to protect the product.
- Therefore, user must restart the product after power reset when emergency operation has been running.

#### Error Display

- This function performs the self diagnosis for the unit and displays the types of the error when an error occurs.
- Error displays the following codes on wired remote controller and red/green LED on out door unit control board.
- If two or more errors simultaneously occur, it displays in the order of error number.
- If an inverter PCB error occurs, remote controller No. 12 error is displayed, and detail error display can be checked using LED of the inverter PCB.
- After an occurrence of an error, error code disappears once the error is corrected.

#### Error Code List

|     |                                                                | Classif           | Classification   |                   |       |
|-----|----------------------------------------------------------------|-------------------|------------------|-------------------|-------|
| No. | Error Type                                                     | Slight<br>Trouble | Heavy<br>Trouble | Option<br>Trouble | Error |
| 01  | Air temperature sensor error                                   | 0                 |                  |                   |       |
| 03  | No communication between wired remote controller & indoor unit |                   |                  |                   | 0     |
| 05  | Indoor unit & outdoor unit communication error                 |                   |                  |                   | 0     |
| 08  | Water tank temperature sensor error                            |                   |                  | 0                 |       |
| 09  | Indoor unit EEPROM error                                       |                   |                  |                   | 0     |
| 11  | Indoor unit & inverter PCB communication error                 |                   |                  |                   | 0     |
| 12  | Inverter PCB error                                             |                   |                  |                   | 0     |
| 13  | Solar temperature sensor error                                 |                   |                  |                   | 0     |
| 14  | Flow switch error                                              |                   |                  |                   | 0     |
| 15  | Water pipe overheated                                          |                   |                  |                   | 0     |
| 16  | Water inlet & outlet temperature sensor error                  |                   |                  |                   | 0     |
| 17  | Water inlet temperature sensor error                           | 0                 |                  |                   |       |
| 18  | Water outlet temperature sensor error                          | 0                 |                  |                   |       |

#### Notice of error code

- Slight / Heavy / Option Troubles : lowercases 'ch' + code no.
- Errors : capital letters 'CH' + code no.

#### ■ Inverter PCB Error Code List

 Red LED means error no. 10's digit, and green LED means 1's digit, and when red and green simultaneously blink, it means 100's unit.

Ex) Inverter compressor IPM defect Error : error number 21

| Error Code | Description                    | LED 1 (Red) | LED 2 (Green) |
|------------|--------------------------------|-------------|---------------|
| 21         | Inverter compressor IPM defect | 2times 🕕    | 1time 🕕       |



| Error No. | Error Type                                                   | Main Reasons                                                                                             |
|-----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 21        | Inverter compressor IPM defect                               | Inverter compressor drive IPM defect / inverter compressor defect                                        |
| 22        | Inverter compressor overcurrent                              | Increase of inverter compressor CT value                                                                 |
| 23        | Inverter compressor DC Link low voltage                      | After inverter activation relay is ON, DC voltage recharge<br>defect                                     |
| 25        | High/low Inverter input voltage                              | Inverter input voltage exceeds the unit limit and lasts for 4 sec. (173V ~ 289V)                         |
| 26        | Inverter compressor activation failure                       | Inverter compressor error, causing initial activation failure                                            |
| 27        | Inverter PSC/PFC Fault Error                                 | Error by overcurrent at inverter input                                                                   |
| 28        | Inverter DC Link high voltage error                          | Inverter DC voltage recharge, causing compressor OFF                                                     |
| 29        | Inverter compressor overcurrent                              | Inverter compressor activation failure or increase of CT value                                           |
| 32        | Excessive rise of inverter compressor discharge temperature  | Excessive rise of inverter compressor discharge tempera-<br>ture, causing compressor OFF                 |
| 34        | Excessive rise of high pressure of inverter compressor       | Excessive rise of high pressure of inverter compressor,<br>causing compressor OFF                        |
| 35        | Excessive drop of low pressure of inverter compressor        | Excessive drop of low pressure of inverter compressor,<br>causing compressor OFF                         |
| 36        | Low pressure ratio error of inverter compressor              | High pressure/low pressure ratio of inverter compressor is<br>maintained at below 1.8 for 3 min. or more |
| 40        | Inverter compressor CT sensor defect                         | Inverter compressor CT sensor defect                                                                     |
| 41        | Inverter compressor discharge pipe temperature sensor defect | Inverter compressor discharge temperature sensor discon-<br>nection or short circuit                     |
| 42        | Low pressure sensor defect of inverter compressor            | Low pressure sensor disconnection or short circuit of<br>inverter compressor                             |
| 43        | High pressure sensor defect of inverter compressor           | High pressure sensor disconnection or short circuit of<br>inverter compressor                            |
| 44        | Inverter inside air temperature sensor defect                | Inverter inside air temperature sensor disconnection or<br>short circuit                                 |
| 46        | Inverter compressor suction pipe temperature sensor defect   | Inverter compressor suction temperature sensor discon-<br>nection or short circuit                       |
| 53        | Communication error(indoor unit outdoor unit main PCB)       | Outdoor unit does not receive signal from indoor unit                                                    |
| 60        | Inverter PCB EEPROM error                                    | Inverter PCB EEPROM error                                                                                |
| 62        | Excessive rise of inverter heatsink temperature              | Inverter PCB heat generation, causing the rise of heatsink temperature                                   |
| 65        | Inverter heatsink temperature sensor defect                  | Inverter heatsink temperature sensor disconnection or<br>short circuit                                   |
| 73        | Overcurrent (Peak) detected at inverter input                | Error by overcurrent detection at inverter input                                                         |

#### Error Code Check

#### Major error Diagnosis Method

| Error<br>No. | Error Type                                    | Error Point | Main Reasons                         |
|--------------|-----------------------------------------------|-------------|--------------------------------------|
| 01           | Air temperature sensor error                  |             |                                      |
| 08           | Water tank temperature sensor error           | 1 '         |                                      |
| 13           | Solar temperature sensor error                | Sensor is   | 1. Indoor unit PCB wrong connection! |
| 16           | Water inlet & outlet temperature sensor error | open/short  | 3. Sensor problem (main reason)      |
| 17           | Water inlet temperature sensor error          | 1 '         |                                      |
| 18           | Water outlet temperature sensor error         | 1           |                                      |

#### Error diagnosis and countermeasure flow chart



\* If the resistance value of the temperature sensor changes according to temperature, and the following resistance values are displayed based on the current temperature, it is normal. ( $\pm$ 5% error) Air temperature sensor : 10°C(50°F)=20.7k $\Omega$  : 25°C(77°F)=10k $\Omega$  : 50°C(122°F)=3.4k $\Omega$ Water inlet/outlet temperature sensor : 10°C(50°F)=10k $\Omega$  : 25°C(77°F)=5k $\Omega$  : 50°C(122°F)=1.8k $\Omega$ Water tank temperature sensor : 10°C(50°F)=10k\Omega : 25°C(77°F)=5k $\Omega$  : 50°C(122°F)=1.8k $\Omega$ 

| Error<br>No. | Error Type                                                        | Error Point                                                                                      | Main Reasons                                                                                                                                               |
|--------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03           | No communication between wired<br>remote controller & indoor unit | The remote controller<br>does not receive the<br>signal from indoor unit<br>during specific time | <ol> <li>Remote controller fault</li> <li>Indoor unit PCB fault</li> <li>Connector fault, wrong connection</li> <li>Communication cable problem</li> </ol> |



\* If there is no remote controller to replace : Use another unit's remote controller doing well

- \*\* Check cable : Contact failure of connected portion or extension of cable are main cause Check any surrounded noise ( check the distance with main power cable) → make safe distance from the devices generate electromagnetic wave
- \*\*\* After replacing indoor unit PCB, do Auto Addressing & input unit's address if connected to central controller. (All the indoor units connected should be turned on before Auto Addressing



**CN-REMO** : Remote controller connection \* The PCB can differ from model to model. Check from the right source.

After replacing the control panel or indoor unit PCB, it is very important to perform parameter setting by entering Installer Setting Mode' at the control panel.

If not, system will NOT be operated correctly. It is STRONGLY recommended to keep above instruction.

| Error<br>No. | Error Type                                   | Error Point                                                   | Main Reasons                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05           | Indoor & Outdoor unit<br>communication error | No signal communication<br>between indoor & outdoor<br>units. | <ol> <li>Auto addressing is not done</li> <li>Communication cable is not connected</li> <li>Short circuit of communication cable</li> <li>Indoor unit communication circuit fault</li> <li>Outdoor unit communication circuit fault</li> <li>Not enough distance between power and communication cable?</li> </ol> |

#### Error diagnosis and countermeasure flow chart



 \* (Note1) communication from IDU is normal if voltage fluctuation(-9V ~ +9V) exists when checking DC voltage of communication terminal between IDU and ODU



 If the DC voltage between communication terminal A, B of indoor unit fluctuates within (-9V~+9V) then communication from outdoor unit is normal



| Error<br>No. | Error Type | E |
|--------------|------------|---|
|              |            |   |

11

| Error<br>No. | Error Type                  | Error Point | Main Reasons                                                                                                                                                                  |
|--------------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09           | Indoor unit EEPROM<br>error |             | <ol> <li>Error developed in communication between the<br/>micro- processor and the EEPROM on the sur-<br/>face of the PCB.</li> <li>ERROR due to the EEPROM damage</li> </ol> |

#### Error diagnosis and countermeasure flow chart

- Replace the indoor unit PCB, and then make sure to perform Auto addressing and input the address of central control

| Error Type                                        | Error Point                                                      | Main Reasons                                                                                                                                                                                                                                                 |
|---------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indoor unit & inverter PCB<br>communication error | No signal communication<br>between indoor unit &<br>inverter PCB | Wired remote controller fault     Indoor unit PCB fault     Inverter PCB fault     A. PI485 communication board fault     Connector connection and contact defect     Cabled remote controller communication     defect     PI485 communication cable defect |

#### Error diagnosis and countermeasure flow chart



\* When there is no service wired remote controller : Use the next indoor unit wired remote controller.

\*\* Check cable status: It usually occurs when connection is defective or remote controller cable is extended and connected for use. Check the ambient noise effect (check distance from power cable), and take distance from device generating EMI.

\*\*\* After replacing indoor unit PCB, perform auto addressing, and when there is a central controller, input indoor unit central control address.

(Newly perform auto addressing while power is applied to all the connected indoor units.)

| h |
|---|
|   |
| 7 |
|   |
|   |
|   |
|   |
| - |
| - |
|   |
|   |
| - |
|   |

- 8

Test

| Er<br>N | rror<br>Io. | Error Type         | Error Point                         | Main Reasons                                                                        |
|---------|-------------|--------------------|-------------------------------------|-------------------------------------------------------------------------------------|
| 1       | 12          | Inverter PCB error | Error occurrence in inverter<br>PCB | Connector connection defect     Inverter compressor error     Pressure sensor error |

• If inverter PCB error occurs, remote controller No. 12 error is displayed, and detail error display can be checked using LED of the inverter PCB.

Error display

- Red LED means error no. 10's digit, and green LED means 1's digit, and when red and green simultaneously blink, it means 100's unit.

Ex) After red and green LED simultaneously blink, red LED blinks 1 time, and green LED blinks 5 times : error no. 115

#### Error diagnosis and countermeasure flow chart





| Error<br>No. | Error Type                                                   |
|--------------|--------------------------------------------------------------|
| 21           | Inverter compressor IPM defect                               |
| 22           | Inverter compressor overcurrent                              |
| 23           | Inverter compressor DC Link low voltage                      |
| 25           | High/low Inverter input voltage                              |
| 26           | Inverter compressor activation failure                       |
| 27           | Inverter PSC/PFC Fault Error                                 |
| 28           | Inverter DC Link high voltage error                          |
| 29           | Inverter compressor overcurrent                              |
| 32           | Excessive rise of inverter compressor discharge temperature  |
| 34           | Excessive rise of high pressure of inverter compressor       |
| 35           | Excessive drop of low pressure of inverter compressor        |
| 36           | Low pressure ratio error of inverter compressor              |
| 40           | Inverter compressor CT sensor defect                         |
| 41           | Inverter compressor discharge pipe temperature sensor defect |
| 42           | Low pressure sensor defect of inverter compressor            |
| 43           | High pressure sensor defect of inverter compressor           |
| 44           | Inverter inside air temperature sensor defect                |
| 46           | Inverter compressor suction pipe temperature sensor defect   |
| 53           | Communication error(indoor unit outdoor unit main PCB)       |
| 60           | Inverter PCB EEPROM error                                    |
| 62           | Excessive rise of inverter heatsink temperature              |
| 65           | Inverter heatsink temperature sensor defect                  |
| 73           | Overcurrent (Peak) detected at inverter input                |

| Error<br>No. | Error Type        | Error Point                     | Main Reasons                                            |
|--------------|-------------------|---------------------------------|---------------------------------------------------------|
| 14           | Flow Switch error | Abnormal working of flow switch | 1.Pump fault<br>2.Low water flow<br>3.Flow switch fault |

#### Error diagnosis and countermeasure flow chart



(\*): How to identify? - Touch the water pump and feel if the water pump is vibrating. If no vibration, the water pump is not operating. Also, you can see 'Water Pump Operating Icon( 🏠 ) ' at control

 Although there is not water flow inside water circuit, the flow switch detects as if water is flowing. It is А due to electrically closed (or shorted) flow switch or mechanically stucked contact of the flow switch. · Replace the flow switch.

 Check if water inside water circuit is fully charged. Pressure gage at the indoor unit should indicate 1.5~2.0 bar. · Also, as the hand of the pressure gage does not react so fast according to water charging, check the pressure gage again. • Otherwise, there can be water leakage inside water circuit. Examine if water circuit is completely sealed.

· Although water is well flowing, the flow switch can not detect water flow. It is due to electrically opened flow switch or mechanically broken contact of the flow switch. · Replace the flow switch.

· Replace the water pump.

В

С

D

· Also, check the water quality if there are particles that can yield locking at the shaft of the water pump.

| Error<br>No. | Error Type            | Error Point                                    | Main Reasons                                                                                                           |
|--------------|-----------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 15           | Water pipe overheated | Water outlet temperature is above 90°C (194°F) | <ol> <li>High temperature of water inflow</li> <li>Temperature sensor defect</li> <li>Indoor unit PCB fault</li> </ol> |



\*Water inlet/outlet temperature sensor location



\*\*If the resistance value of the temperature sensor changes according to temperature, and the following resistance values are displayed based on the current temperature, it is normal. (±5% error) Air temperature sensor : 10°C(50°F)=20.7kΩ : 25°C(77°F)=10kΩ : 50°C(122°F)=3.4kΩ Gas/Liquid side temperature sensor : 10°C(50°F)=10kΩ : 25°C(77°F)=5kΩ : 50°C(122°F)=1.8kΩ Water inlet/outlet temperature sensor : 10°C(50°F)=10kΩ : 25°C(77°F)=5kΩ : 50°C(122°F)=1.8kΩ Water tank temperature sensor : 10°C(50°F)=10kΩ : 25°C(77°F)=5kΩ : 50°C(122°F)=1.8kΩ





| Error<br>No. | Error Type                        | Error Point                                                                                          | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21           | Inverter compressor IPM<br>defect | IPM self protection circuit<br>in operation<br>(overcurrent / IPM over-<br>heated / Vcc low voltage) | <ol> <li>Overcurrent on inverter compressor<br/>(U,V,W)</li> <li>Compressor damaged (insulation destroyed<br/>/ Motor damaged)</li> <li>IPM overheated<br/>(heat radiation plate damaged / heat radia-<br/>tion fan connector loose / heat radiation<br/>plate not connected)</li> <li>Inverter compressor connector fallen /<br/>loose</li> <li>Inverter PCB board damaged</li> <li>Low outdoor unit input voltage</li> </ol> |

#### Error diagnosis and countermeasure flow chart





Measuring insulation resistance between compressor connector and chassis



\* Shapes may be different for each model

| Error<br>No. | Error Type                           | Error Point                                                    | Main Reasons                                                                                                                                                                                                                                                     |
|--------------|--------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22           | Inverter compressor over-<br>current | Inverter PCB input power<br>current exceeds limit (27A<br>rms) | Overload operation     (pipe blocked / closed / EEV locked / excessive refrigerant)     Compressor damaged (insulation destroyed / motor damaged)     Low input voltage     Wrong power cable connection     Inverter PCB damaged (input current detection part) |

#### Error diagnosis and countermeasure flow chart





CT Sensor output terminal



\* How to check PCB input current detection circuit

- 1. Set Multi tester DC voltage measurement mode
- 2. Measure DC voltage while power is applied and in operation standby state
- 3. If the measurement goes out of DC 2.5V ± 0.2V, PCB component is damaged

| Error<br>No. | Error Type                                 | Error Point                                                             | Main Reasons                                                                                                                                                                                                    |
|--------------|--------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23           | Inverter compressor DC<br>Link low voltage | After inverter activation<br>relay is ON, DC voltage<br>recharge defect | Wrong DC link terminal connection / termi-<br>nal contact defect     Z. Activation relay damaged     S. Condenser damaged     Inverter PCB damaged (DC Link voltage<br>detection part)     S. Low input voltage |

#### Error diagnosis and countermeasure flow chart



Introduction

036 \_trouble shooting guide book



\* How to check PCB DC Link voltage detection circuit

- 1. Set Multi tester DC voltage measurement mode
- 2. Measure DC voltage while power is applied and in operation standby state
- 3. If the measurement goes out of DC 2.4~2.8V, a component is damaged

| Error<br>No. | Error Type                           | Error Point                                                                               | Main Reasons                                                                                                                                                                                                                  |
|--------------|--------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25           | High/low Inverter input volt-<br>age | Inverter input voltage<br>exceeds the unit limit and<br>lasts for 4 sec.<br>(173V – 289V) | <ol> <li>Abnormal input voltage<br/>(single phase : L-N, 3 phase : T-N)</li> <li>Power connection defect<br/>(N phase not connected)</li> <li>Outdoor unit inverter PCB damaged<br/>(input voltage detection part)</li> </ol> |

#### Error diagnosis and countermeasure flow chart



ade



| <br> | <br> |  |    |
|------|------|--|----|
|      |      |  | 10 |
|      |      |  |    |

Introduction

5

| Error<br>No. | Error Type                                  | Error Point                                                                                                                                  | Main Reasons                                                                                                                                                                                                                        |
|--------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26           | Inverter compressor activa-<br>tion failure | Initial activation failure due<br>to problem with compres-<br>sor and cycle, or failure to<br>detect location of rotor dur-<br>ing operation | Overload operation (pipe blocked / EEV<br>locked / excessive refrigerant)     Compressor damaged (insulation destroyed<br>/ motor damaged)     Compressor connection defect     Inverter PCB damaged (CT)     S. Power relay defect |

#### Error diagnosis and countermeasure flow chart



| Erro<br>No. | Error Type                      | Error Point                                           | Main Reasons                                                                                                                                                                                                                                                                                     |
|-------------|---------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27          | Inverter PSC/PFC Fault<br>Error | Inverter PCB input current exceeds 100A(peak) for 2µs | 1. Overload operation (pipe blocked / closed /<br>EEV locked / accessive refrigerant)     2. Compressor damaged (insulation destroyed<br>/ motor damage)     3. Abnormal input voltage (L,N)     4. Wrong power cable connection     5. Inverter PCB damaged (input current detec-<br>tion part) |

#### Error diagnosis and countermeasure flow chart



- 1. Set multi tester to diode mode
- 2. Check a short circuit between input signal pins at the bottom of PFC module
- 3. If there is a short circuit in other pins except No. 4 and 5 pin, replace PCB

CAUTION PFCM module No. 4 and 5 pins are internally short circuited.

| Error<br>No. | Error Type                  | Error Point                | Main Reasons                                                                                                                                                 |
|--------------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28           | Inverter DC Link high volt- | Inverter PCB DC link volt- | <ol> <li>Abnormal input voltage (R/S/T/N, L/N)</li> <li>Power connection defect (N phase not connected)</li> <li>Outdoor unit inverter PCB damaged</li></ol> |
|              | age error                   | age is above 780V          | (DC Link voltage detection part)                                                                                                                             |



#### Single phase model



| Error<br>No. | Error Type                           | Error Point                                                         | Main Reasons                                                                                                                                                                                                                |
|--------------|--------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29           | Inverter compressor over-<br>current | Inverter compressor input<br>current set value exceeded<br>35A peak | Overload operation     (pipe blocked / closed / EEV locked / exces-<br>sive refrigerant)     Compressor damaged (insulation destroyed<br>/ motor damaged)     S. Low input voltage     4. Outdoor unit inverter PCB damaged |

#### Error diagnosis and countermeasure flow chart



| Error<br>No. | Error Type                                                          | Error Point                                                                                      | Main Reasons                                                                                                                                          |
|--------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32           | Excessive rise of inverter<br>compressor discharge tem-<br>perature | Excessive rise of inverter<br>compressor discharge tem-<br>perature, causing compres-<br>sor OFF | <ol> <li>Inverter compressor discharge pipe temper-<br/>ature sensor defect</li> <li>Refrigerant insufficient / leakage</li> <li>EEV fault</li> </ol> |



\*Discharge pipe temperature sensor : 10°C(50°F) = 362kΩ, 25°C (77°F) = 200kΩ, 50°C (122°F) = 82kΩ, 100°C (212°F) = 18.5kΩ

| Error<br>No. | Error Type                                                     | Error Point                                                                                                                                | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34           | Excessive rise of high<br>pressure of inverter com-<br>pressor | Excessive rise of high<br>pressure of inverter com-<br>pressor, causing compres-<br>sor OFF(10 times)<br>Error by repeated occur-<br>rence | High pressure sensor failure     Indoor unit fan or outdoor unit fan failure     Refrigerant pipe damage causing pipe     deformation     Refrigerant excessive recharge     Indoor EEV defect (during cooling)     Indoor / outdoor EEV defect (during heating)     Ouring the closing (during cooling, outdoor     unit closed / during heating, indoor filter     blocked)     Service valve blocked     Outdoor unit PCB defect     Untdoor unit     1. Refrigerant excessive |

#### Error diagnosis and countermeasure flow chart



| Error<br>No. | Error Type                                                    | Error Point                                                                                                      | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35           | Excessive drop of low<br>pressure of inverter com-<br>pressor | Excessive drop of low<br>pressure of inverter com-<br>pressor,<br>causing compressor OFF(3<br>times in sequence) | Low pressure sensor failure     Lindoor unit fan or outdoor unit fan failure     S. Refrigerant insufficient/leakage     Refrigerant pipe damage causing pipe     deformation     S. Indoor EEV defect (during cooling)     Indoor / outdoor EEV defect (during heating)     Outdoor / outdoor EEV defect (during heating)     Outdoor / during heating, indoor filter     blocked     Outdoor unit PCB defect     Othersure     S. Thermistor defect of indoor unit |



\* If there is a big difference in the temperature between front and back of the strainer, being able to see the freezing, or if the temperature difference is verified, strainer being blocked shall be doubted.

| Error<br>No. | Error Type                           | Error Point                                                                               | Main Reasons                                                                                                                                               |
|--------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40           | Inverter compressor CT sensor defect | At the initial state of<br>power supply, Micom<br>input voltage goes out<br>of 2.5V ±0.3V | <ol> <li>Abnormal input voltage (T,N)</li> <li>DC power damaged (DC5V power)</li> <li>Outdoor unit inverter PCB damaged<br/>(CT detection part)</li> </ol> |

#### Error diagnosis and countermeasure flow chart



| Error<br>No. | Error Type                                                   | Error Point                                                                              | Main Reasons                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41           | Inverter compressor discharge pipe temperature sensor defect | Inverter compressor<br>discharge temperature<br>sensor disconnection<br>or short circuit | <ol> <li>Inverter compressor discharge pipe<br/>temperature sensor connection fault</li> <li>Inverter compressor discharge pipe<br/>temperature sensor defect<br/>(Open/Short)</li> <li>Outdoor unit PCB defect</li> </ol> |



\* If it is 5 MΩ or more (open) or 2 kΩ or less (short), error occurs.

If the resistance value of the temperature sensor changes according to temperature, and the following resistance values are displayed based on the current temperature, it is normal. (±5% error)

Discharge pipe temperature sensor : 10°C(50°F) = 362kΩ, 25°C (77°F) = 200kΩ, 50°C (122°F) = 82kΩ, 100°C (212°F) = 18.5kΩ

| Error<br>No. | Error Type                                            | Error Point                                                               | Main Reasons                                                                                                           |
|--------------|-------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 42           | Low pressure sensor defect of<br>inverter compressor  | Abnormal measure-<br>ment value of sensor<br>resistance<br>(Open / Short) | Low pressure sensor connection<br>fault     Low pressure sensor defect<br>(Open / Short)     Outdoor unit PCB defect   |
| 43           | High pressure sensor defect of<br>inverter compressor | Abnormal measure-<br>ment value of sensor<br>resistance<br>(Open / Short) | High pressure sensor connection<br>fault     High pressure sensor defect<br>(Open / Short)     Outdoor unit PCB defect |

#### Error diagnosis and countermeasure flow chart



Checking high/ low pressure sensor connection



High pressure sensor : red housing

Low pressure sensor : blue housing

| Error<br>No. | Error Type                                                    | Error Point                                                                             | Main Reasons                                                                                                                                                                            |
|--------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44           | Inverter inside air temperature sensor defect                 | Abnormal measure-<br>ment value of tempera-<br>ture sensor resistance<br>(Open / Short) | <ol> <li>Inverter inside air temperature sensor connection fault</li> <li>Inverter inside air temperature sensor defect (Open / Short)</li> <li>Outdoor unit PCB defect</li> </ol>      |
| 46           | Inverter compressor suction pipe<br>temperature sensor defect | Abnormal measure-<br>ment value of tempera-<br>ture sensor resistance<br>(Open / Short) | Inverter compressor suction pipe<br>temperature sensor connection fault<br>2. Inverter compressor suction pipe<br>temperature sensor defect<br>(Open/Short)     Outdoor unit PCB defect |



\* If it is 100 k $\Omega$  or more (open) or 100 $\Omega$  or less (short), error occurs.

If the resistance value of the temperature sensor changes according to temperature, and the following resistance values are displayed based on the current temperature, it is normal. (±5% error) Inside air temperature sensor : 10°C(50°F) = 20.7kΩ, 25°C (77°F) = 10kΩ, 50°C (122°F) = 3.4kΩ Suction pipe temperature sensor :  $10^{\circ}C(50^{\circ}F) = 10k\Omega$ ,  $25^{\circ}C(77^{\circ}F) = 5k\Omega$ ,  $50^{\circ}C(122^{\circ}F) = 1.8k\Omega$ 

| Error<br>No. | Error Type                                                   | Error Point                                                          | Main Reasons                                                                                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53           | Communication error (indoor unit<br>→ outdoor unit main PCB) | Outdoor unit main PCB<br>does not receive signal<br>from indoor unit | Communication cable is not connected     Communication cable disconnected     or short circuited     Indoor unit power Off     Outdoor unit main PCB defect /     indoor unit PCB defect     Connection fault between communi-     cation cables (welding not done) |

#### Error diagnosis and countermeasure flow chart



Communication between outdoor unit and indoor unit



asas - asaa





\* Shapes may be different for each model.

Introduction

So check with the same method as CH05, and check with the above flow diagram by additionally referring to the following items.

 If the number of indoor units checked during auto addressing and that of indoor units checked during LGMV verification are the same, Check the number of indoor unit communications, and verify whether LED of communication PCB in the corresponding indoor unit blinks.

If it does not blink, replacing communication PCB shall be considered.

- If the number of indoor units checked during auto addressing and that of indoor units checked during LGMV verification are different,
- 1. Check whether power is applied to indoor unit.
- 2. If there is no problem in all indoor unit power, auto addressing shall be performed again.

If there is still a problem after auto addressing, consider to replace indoor unit PCB without auto addressing or communication PCB.

\* During the replacement of indoor unit PCB, perform auto addressing, and if there is a central controller, input a central control address of indoor unit, and during the replacement of communication PCB, the above work is not necessary.

| Error<br>No. | Error Type                | Error Point                                | Main Reasons                                                                                                                                |
|--------------|---------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 60           | Inverter PCB EEPROM error | EEPROM access error<br>and Check Sum error | <ol> <li>EEPROM contact defect/ wrong<br/>insertion</li> <li>Different EEPROM version</li> <li>Outdoor unit inverter PCB damaged</li> </ol> |

#### Error diagnosis and countermeasure flow chart





Correct insertion direction of inverter EEPROM



\* Caution: Make sure to replace after turning off the power

\* Shapes may be different for each model.

| Error<br>No. | Error Type                                      | Error Point                                      | Main Reasons                                                                                                                                                                                                                                                                        |
|--------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 62           | Excessive rise of inverter heatsink temperature | Inverter heatsink tem-<br>perature is above 95°C | <ol> <li>Overload operation (pipe blocked /<br/>closed / EEV defect / excessive<br/>refrigerant)</li> <li>Outdoor unit fan locked</li> <li>Connection fault between inverter<br/>PCB and heatsink</li> <li>Inverter PCB defect, temperature<br/>detection circuit defect</li> </ol> |



#### Measuring CT detection part voltage

\* How to check PFCM module

- 1. Set multi tester to diode mode.
- 2. Check resistance between No. 19 pin and No. 20 pin of PCB PFC module .
- 3. Resistance value shall be  $7k\Omega{\pm}10\%$  at  $25^{\circ}C$  (77°F)

PFCM: Measure resistance between No. 19 and No. 20 pin

IPM: Measure resistance between No. 19 and No. 20 pin



| Error<br>No. | Error Type                                       | Error Point                                                                        | Main Reasons                                                                                                                    |
|--------------|--------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 65           | Inverter heatsink temperature sen-<br>sor defect | Inverter heatsink tem-<br>perature sensor dis-<br>connection or short cir-<br>cuit | 1. Assembly status defect between<br>inverter PCB and heatsink<br>2. Temperature detection part defect<br>(inverter PCB defect) |

#### Error diagnosis and countermeasure flow chart



| Error<br>No. | Error Type                                    | Error Point                                                                  | Main Reasons                                                                                                                                                                                                                                                                                                   |
|--------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73           | Overcurrent (Peak) detected at inverter input | Inverter PCB input<br>power current value is<br>50A(Peak) or more for<br>2ms | Overload operation (pipe blocked /<br>outdoor heat exchanger closed /<br>EEV defect / excessive refrigerant)     Compressor damaged (insulation<br>destroyed / motor damaged)     Abnormal input voltage (L,N)     A Power cable connection fault     Inverter PCB damaged (input cur-<br>rent detection part) |







Checking inverter PCB power connection



Checking connection between noise filter and inverter PCB power



Introduction

056 \_trouble shooting guide book

Introduction

## 2. OutDoor

#### Error Code Display

#### Error Indicator

- This function indicates types of failure in self-diagnosis and occurrence of failure for air condition.
- Error mark is displayed on display window of indoor units and wired remote controller, and 7-segment LED of outdoor unit control board as shown in the table.
- · If more than two troubles occur simultaneously, lower number of error code is first displayed.
- After error occurrence, if error is released, error LED is also released simultaneously.

#### Error Display

1st,2nd LED of 7-segment indicates error number, 3rd LED indicates unit number.

|           | Error No. |   | lo. | Error Type                                                      | Main Reasons                                                                                          |
|-----------|-----------|---|-----|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|           | 2         | 1 | 1   | Inverter compressor IPM defect                                  | Inverter compressor drive IPM defect /<br>inverter compressor defect                                  |
|           | 2         | 2 | 1   | Inverter compressor overcurrent                                 | Increase of inverter compressor CT value                                                              |
|           | 2         | 3 | 1   | Inverter compressor DC Link low voltage                         | After inverter activation relay is ON, DC voltage recharge defect                                     |
|           | 2         | 4 | 1   | Outdoor Unit High Pressure Switch                               | System is turned off by outdoor unit high<br>pressure switch.                                         |
|           | 2         | 5 | 1   | High/low Inverter input voltage                                 | Inverter input voltage exceeds the unit limit and lasts for 4 sec. (173V ~ 289V)                      |
|           | 2         | 6 | 1   | Inverter compressor activation<br>failure                       | Inverter compressor error, causing initial<br>activation failure                                      |
| [         | 2         | 7 | 1   | Inverter PSC/PFC Fault Error                                    | Error by overcurrent at inverter input                                                                |
| 2         | 2         | 8 | 1   | Inverter DC Link high voltage error                             | Inverter DC voltage recharge, causing<br>compressor OFF                                               |
| ed emo    | 2         | 9 | 1   | Inverter compressor overcurrent                                 | Inverter compressor activation failure or<br>increase of CT value                                     |
| it relati | 3         | 2 | 1   | Excessive rise of inverter compressor<br>discharge temperature  | Excessive rise of inverter compressor discharge<br>temperature, causing compressor OFF                |
| oor un    | 3         | 4 | 1   | Excessive rise of high pressure of<br>inverter compressor       | Excessive rise of high pressure of inverter<br>compressor, causing compressor OFF                     |
| Outdo     | 3         | 5 | 1   | Excessive drop of low pressure of<br>inverter compressor        | Excessive drop of low pressure of inverter<br>compressor, causing compressor OFF                      |
|           | 3         | 6 | 1   | Low pressure ratio error of inverter compressor                 | High pressure/low pressure ratio of inverter compressor is maintained at below 1.8 for 3 min. or more |
|           | 3         | 9 | 1   | Transmission Error Between (PFC Micom -> INV Micom)             | Communication Error Between PFC Micom and INV Micom.                                                  |
| [         | 4         | 0 | 1   | Inverter compressor CT sensor defect                            | Inverter compressor CT sensor defect                                                                  |
|           | 4         | 1 | 1   | Inverter compressor discharge pipe<br>temperature sensor defect | Inverter compressor discharge temperature<br>sensor disconnection or short circuit                    |
|           | 4         | 2 | 1   | Low pressure sensor defect of<br>inverter compressor            | Low pressure sensor disconnection or short<br>circuit of inverter compressor                          |
|           | 4         | 3 | 1   | High pressure sensor defect of<br>inverter compressor           | High pressure sensor disconnection or short<br>circuit of inverter compressor                         |
|           | 4         | 4 | 1   | Inverter inside air temperature<br>sensor defect                | Inverter inside air temperature sensor<br>disconnection or short circuit                              |
|           | 4         | 5 | 1   | Outdoor Unit Heat Exchanger<br>Temperature Sensor Fault         | Outdoor Unit Heat Exchanger Temperature<br>Sensor Open or Short                                       |

|         | Error No. |     | No. | Error Type                                                    | Main Reasons                                                                           |
|---------|-----------|-----|-----|---------------------------------------------------------------|----------------------------------------------------------------------------------------|
|         | 4         | 6   | 1   | Inverter compressor suction pipe temperature<br>sensor defect | Inverter compressor suction temperature<br>sensor disconnection or short circuit       |
|         | 5         | 2   | 1   | Communication error : inverter PCB -> Main PCB                | Failing to receive inverter signal at main PCB<br>of Outdoor Unit                      |
|         | 5         | 3   | 1   | Communication error(indoor unit -> outdoor unit main PCB)     | Outdoor unit does not receive signal from<br>indoor unit                               |
|         | 5         | 7   | 1   | Communication error : inverter PCB -> Main PCB                | Restriction of Outdoor Unit (Inverter PCB)                                             |
| Lo L    | 6         | 0   | 1   | Inverter PCB EEPROM error                                     | Inverter PCB EEPROM error                                                              |
| lated e | 6         | 2   | 1   | Excessive rise of inverter heatsink temperature               | Inverter PCB heat generation, causing the rise<br>of heatsink temperature              |
| it re   | 6         | 5   | 1   | Heatsink TH error                                             | Inverter PCB heatsink sensor is open or short                                          |
| n l     | 6         | 7   | 1   | Outdoor Unit Fan Lock                                         | Restriction of Outdoor Unit Fan                                                        |
| tdo     | 7         | 3   | 1   | Overcurrent (Peak) detected at inverter input                 | Error by overcurrent detection at inverter input                                       |
| ō       | 8         | 6   | 1   | Outdoor Unit Main PCB EEPROM Error                            | Communication Fail Between Outdoor Unit<br>Main MICOM and EEPROM or omitting<br>EEPROM |
|         | 8         | 8   | 1   | PFC PCB EEPROM Error                                          | Communication Fail Between Outdoor Unit<br>PFC MICOM and EEPROM or omitting<br>EEPROM  |
|         | 1         | 1 : | 3 1 | Outdoor Unit Liquid pipe<br>Temperature Sensor Error          | Liquid pipe temperature sensor of outdoor unit<br>is open or short                     |
|         | 1         | 1 : | 5 1 | Outdoor Unit Subcooling Outlet Temperature<br>Sensor Error    | Outdoor Unit Subcooling Outlet Temperature<br>Sensor open or short                     |
|         | 1         | 5   | 1   | Failure of operation mode<br>conversion at Outdoor Unit       | Pressure unbalance between outdoor units                                               |

### Error Code Check

| Error<br>No. | Error Type                               | Error Point                                                                                     | Main Reasons                                                                                                                                                                                                                                                              |
|--------------|------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21           | Inverter PCB Assembly IPM<br>Fault occur | IPM self protection circuit<br>activation<br>(Overcurrent/IPM overheat-<br>ing/Vcc low voltage) | <ol> <li>Over current detection at Inverter compressor(U,V,W)</li> <li>Compressor damaged (insulation damaged/Motor damaged)</li> <li>Inverter compressor terminal disconnected or loose</li> <li>Inverter PCB assembly damaged</li> <li>ODU input current low</li> </ol> |

#### Error diagnosis and countermeasure flow chart



#### 1Ø Model

Measuring resistance between each terminal of compressor



Measuring insulation resistance between Comp output terminal and chassis



Compressor output terminal joining position





| 5 |
|---|
|   |
|   |

| Error<br>No. | Error Type                  | Error Point                                                                                  | Main Reasons                                                                                                                                                                                                                                                             |
|--------------|-----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22           | AC Input Current Over Error | Inverter PCB Assembly input<br>power current is over limited<br>value<br>* 1 PHASE : 29A rms | 1. Overload operation (Pipe<br>clogging/Covering/EEV defect/Ref.<br>overcharge)     2. Compressor damage(Insulation<br>damage/Motor damage)     3. Input voltage low     4. Power Line Misconnection     5. Inverter PCB Assembly damage<br>(Input current sensing part) |



#### 1Ø Model

Measuring resistance between each terminal of compressor

Compressor output terminal joining position







#### Measuring input voltage



Measuring CT sensing Voltage 1Ø Model

U3 Chassis (2 Fan Model)



<Inverter PCB>

<Input Voltage Sensing Check Point>

062 \_trouble shooting guide book

| Error<br>No. | Error Type                                 | Error Point                                         | Main Reasons                                                                                                                                                                                                                               |
|--------------|--------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23           | Inverter Compressor DC<br>Link Low Voltage | DC Voltage isn't charged<br>after starting relay on | <ol> <li>DC Link terminal misconnection/terminal<br/>contact fault</li> <li>Starting relay damage</li> <li>Condenser damage</li> <li>Inverter PCB assembly damage<br/>(DC Link voltage sensing part)</li> <li>Input voltage low</li> </ol> |



#### ■ 1Ø Model



<Inverter PCB>

U4 Chassis (1 Fan Model)







| Error<br>No. | Error Type                                                         | Error Point                                                          | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24           | Excessive rise of discharge<br>pressure in outdoor com-<br>pressor | Compressor off due to the<br>high pressure switch in<br>outdoor unit | Defective high pressure switch     Defective fan of indoor unit or outdoor unit     Check valve of compressor clogged     Pipe distortion due to the pipe damage     S. Refrigerant overcharge     O. Defective EEV at the indoor or outdoor unit     Covering or clogging(Outdoor covering during     the cooling mode /Indoor unit filter clogging     during the heating mode)     S. SVC valve clogging     Defective outdoor PCB |





\*\*Checking short or not at connector of high pressure switch



| Error<br>No. | Error Type             | Error Point                                                                           | Main Reasons                                                                                                                                 |
|--------------|------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 25           | Input Voltage high/low | Input voltage is over limited<br>value of the product (173V<br>or less, 289V or more) | <ol> <li>Input voltage abnormal (R-N or T-N)(L-N)</li> <li>Outdoor unit inverter PCB assembly damage (input voltage sensing part)</li> </ol> |

#### Error Diagnosis and Countermeasure Flow Chart



#### ■ 1Ø Model

U3 Chassis (2 Fan Model)

Measuring input voltage Inverter PCB assembly power wiring





#### Measuring Input Voltage Sensing

#### 1Ø Model

U3 Chassis (2 Fan Model)



<Inverter PCB>

<Input Voltage Sensing Check Point>

| Error<br>No. | Error Type                                 | Error Point                                           | Main Reasons                                                                                                                                                                                                                              |
|--------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26           | Inverter compressor starting failure Error | Starting failure because of<br>compressor abnormality | <ol> <li>Overload operation<br/>(Pipe clogging/Covering/EEV defect/Ref.<br/>overcharge)</li> <li>Compressor damage<br/>(Insulation damage/Motor damage)</li> <li>Compressor wiring fault</li> <li>ODU inverter PCB damage (CT)</li> </ol> |

Error Diagnosis and Countermeasure Flow Chart



Introduction

#### 1Ø Model

Measuring resistance between each terminal of compressor







| Error<br>No. | Error Type                               | Error Point                                                          | Main Reasons                                                                                                                                                                                                                                                                                           |
|--------------|------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27           | AC input instant over cur-<br>rent error | Inverter PCB input power<br>current is over<br>* 1 PHASE : 100A peak | 1.Overload operation (Pipe clogging/<br>Covering/EEV defect/Ref. overcharge)     2.Compressor damage (Insulation<br>damage/Motor damage)     3.Input voltage abnormal (L,N)(R,S,T,N)     4.Power line assemble condition abnormal     5.Inverter PCB assembly Damage (input cur-<br>rent sensing part) |

#### Error Diagnosis and Countermeasure Flow Chart


#### Measuring Method

#### 1Ø Model

- \* PFCM Moudle checking method
- ① Set the multi tester to diode mode.
- ② Check short between input signal pin which are placed below PFC Module
- ③ Replace PCB assembly if it is short between pins except No.4,5 pins.

PFCM module No.4,5 pins are internal short state.



| Error<br>No. | Error Type                          | Error Point                                   | Main Reasons                                                                                                                  |
|--------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 28           | Inverter DC link high voltage error | Inv PCB DC link voltage<br>supplied over 780V | <ol> <li>Input voltage abnormal (L~N)(R,S,T,N)</li> <li>ODU inverter PCB damage<br/>(DC Link voltage sensing part)</li> </ol> |

#### Error Diagnosis and Countermeasure Flow Chart



#### 1Ø Model



| Error<br>No. | Error Type                          | Error Point                                                          | Main Reasons                                                                                                                                                                                                                           |
|--------------|-------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29           | Inverter compressor over<br>current | Inverter compressor input<br>current is over<br>* 1 PHASE : 35A peak | <ol> <li>Overload operation<br/>(Pipe clogging/Covering/EEV defect/Ref.<br/>overcharge)</li> <li>Compressor damage(Insulation<br/>damage/Motor damage)</li> <li>Input voltage low</li> <li>ODU inverter PCB assembly damage</li> </ol> |



Measuring resistance between each terminal of compressor



Measuring input voltage





Compressor output terminal joining position

Introduction

074 \_trouble shooting guide book

| Error<br>No. | Error Type                                                                              | Error Point                                                                                      | Main Reasons                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32           | Over-increase discharge<br>temperature of inverter com-<br>pressor at main outdoor unit | Compressor is off<br>because of over-increase<br>discharge temperature of<br>inverter compressor | Temperature sensor defect of inverter com-<br>pressor discharge pipe     Refrigerant shortage / leak     S. EEV defect     Liquid injection valve defect |



| Error<br>No. | Error Type                                                | Error Point                                                                                                                                     | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34           | Over-increase of dis-<br>charge pressure of<br>compressor | Error happens<br>because of 3 times<br>successive compres-<br>sor off due to over-<br>increase of high pres-<br>sure by high pressure<br>sensor | Defect of high pressure sensor     Defect of indoor or outdoor unit fan     Deformation because of damage of refrigerant pipe     Over-charged refrigerant     Defective indoor / outdoor unit EEV     Owhen blocked     Outdoor unit is blocked during cooling     Indoor unit filter is blocked during heating     SVC valve is clogged     PCB defect of outdoor unit     Io. Indoor unit bibe temperature sensor defect |

#### Error diagnosis and countermeasure flow chart



| Error<br>No. | Error Type                                               | Error Point                                                                                                                                           | Main Reasons                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35           | Excessive drop of<br>discharge pressure<br>of compressor | Error happens<br>because of 3 times<br>successive compres-<br>sor off due to exces-<br>sive drop of low pres-<br>sure by the low pres-<br>sure sensor | Defective low pressure sensor     Defective outdoor/indoor unit fan     Refrigerant shortage/leakage     Deformation because of damage of refrigerant pipe     Defective indoor / outdoor unit EEV     Covering / clogging     (outdoor unit covering during the cooling mode/     indoor unit filter clogging during heating mode)     SVC valve clogging     B. Defective outdoor unit PCB     Defective indoor unit pipe sensor |



| Error<br>No. | Error Type                                               | Error Point                                                | Main Reasons                                                                                                                   |
|--------------|----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 39           | Transmission Error<br>Between (PFC Micom<br>→ INV Micom) | Communication Error<br>Between PFC Micom<br>and INV Micom. | <ol> <li>Micom defect/Circuit defect</li> <li>Different Micom S/W Version</li> <li>ODU inverter PCB assembly damage</li> </ol> |

#### Error diagnosis and countermeasure flow chart



Introduction

078 \_ TROUBLE SHOOTING GUIDE BOOK

Replacement

| No. | Error Type      | Error Point                                                                        | Main Reasons                                                                                            |
|-----|-----------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 40  | CT sensor error | Micom input voltage isn't<br>within 2.5V ±0.3V at initial<br>state of power supply | <ol> <li>Input voltage abnormal (T-N)</li> <li>ODU inverter PCB damage<br/>(CT sensing part)</li> </ol> |

Main Reasons

#### Error Diagnosis and Countermeasure Flow Chart

Error Type



Error Point

#### Measuring CT sensing Voltage

#### ■ 1Ø Model

U3 Chassis (2 Fan Model)



<Inverter PCB>

<Input Voltage Sensing Check Point>

#### 1Φ Model

Error





| Error No. | Error Type                                                      | Error Point                                             | Main Reasons                                                                                                                                                                                                                         |
|-----------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41        | Compressor dis-<br>charge pipe tem-<br>perature sensor<br>error | Sensor measurement<br>valve is abnormal<br>(Open/Short) | <ol> <li>Defective connection of the<br/>compressor discharge pipe tem-<br/>perature sensor</li> <li>Defective discharge pipe com-<br/>pressor sensor of the compres-<br/>sor (open/short)</li> <li>Defective outdoor PCB</li> </ol> |



\* Error is generated if the resistance is more than 5M $\Omega$ (open) and less than 2k $\Omega$  (short)

Note: Standard values of resistance of sensors at different temperatures (±5% variation)  $10^{\circ}C = 362k\Omega : 25^{\circ}C = 200k\Omega : 50^{\circ}C = 82k\Omega : 100^{\circ}C = 18.5k\Omega$ 





| Error<br>No. | Error Type                       | Error Point                                 | Main Reasons                                                                                                           | MVK        |
|--------------|----------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|
| 42           | Sensor error of low pressure     | Abnormal value of<br>sensor<br>(Open/Short) | Bad connection of low pressure connector     Defect of low pressure connector (Open/Short)     Defect of outdoor PCB   | Introducti |
| 43           | Sensor error of high<br>pressure | Abnormal value of<br>sensor<br>(Open/Short) | Bad connection of high pressure connector     Defect of high pressure connector (Open/Short)     Defect of outdoor PCB | Se         |

#### Error diagnosis and countermeasure flow chart



High pressure sensor





| Error No. | Error Type                                                   | Error Point                              | Main Reasons                                                                                                                                            |
|-----------|--------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44        | Sensor error of<br>outdoor air temper-<br>ature              | Abnormal value of<br>sensor (Open/Short) | 1. Bad connection of air temperature connector<br>2. Defect of air temperature connector(Open/Short)<br>3. Defect of outdoor PCB                        |
| 45        | Outdoor unit heat<br>exchanger temper-<br>ature sensor error | Abnormal value of sensor (Open/Short)    | <ol> <li>Bad connection of air temperature connector</li> <li>Defect of air temperature connector(Open/Short)</li> <li>Defect of outdoor PCB</li> </ol> |
| 46        | Compressor suc-<br>tion temperature<br>sensor error          | Abnormal value of sensor (Open/Short)    | 1. Bad connection of air temperature connector<br>2. Defect of air temperature connector(Open/Short)<br>3. Defect of outdoor PCB                        |



| E | Frror<br>No. | Error Type                                              | Error Point                                                         | Main Reasons                                                                                                                                                                |
|---|--------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 52           | Transmission error between<br>(Inverter PCB → Main PCB) | Main controller can't<br>receive signal from<br>inverter controller | <ol> <li>Power cable or transmission cable is not<br/>connected</li> <li>Defect of outdoor Main fuse/Noise Filter</li> <li>Defect of outdoor Main / inverter PCB</li> </ol> |

#### Error diagnosis and countermeasure flow chart



#### 1Ø Model

The method of checking MAIN PCB and inverter compressor PCB (If normal, transmission LED blinks)





LED in MAIN PCB LED in inverter compressor PCB

| Error<br>No. | Error Type                                     | Error Point                                                  | Main Reasons                                                                                                                  |
|--------------|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 53           | Transmission error<br>(Indoor unit → Main PCB) | In case Main PCB can't<br>receive signal from indoor<br>unit | 1. Transmission cables are not connected<br>2. Transmission cables are short / open<br>3. Defect of outdoor Main / indoor PCB |



In case of CH53, almost happened with CH05, the indoor units not operated actually are normal so check with same method of CH05. and additionally check as shown below and above flow chart

 Although the quantity of indoor units installed is the same as LGMV data there may be a few indoor units with which the number of transmission is not increased with LGMV

- Although the quantity of indoor units installed is not the same as LGMV data, and if transmission of the indoor unit displayed at LGMV is done well then the indoor unit suspected to have some problem (and is not appear at LGMV) may have following problems
- 1) wrong connection of transmission cable or power cable
- 2 fault of power / PCB / transmission cable
- 3 duplication of indoor unit number
- If transmission is not doing well wholly then the Auto Addressing is not done

 The case that CH53 appear at indoor unit also Auto Addressing is not done so indoor unit address may be duplicated

After replacement of indoor unit PCB, Auto Addressing should be done, if central controller is installed then the central control address also should be input.

In case that only transmission  $\ensuremath{\mathsf{PCB}}$  is replaced above process is not needed

| Error<br>No. | Error Type                   | Error Point                                | Main Reasons                                                                                                                          |
|--------------|------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 60           | Inverter PCB EEPROM<br>error | EEPROM Access error and<br>Check SUM error | <ol> <li>EEPROM contact defect/wrong insertion</li> <li>Different EEPROM Version</li> <li>ODU inverter PCB assembly damage</li> </ol> |

#### Error Diagnosis and Countermeasure Flow Chart





Right inserting direction of inverter EEPROM





\* Note : Replace after power off

EEPROM enlarged picture

| Error<br>No. | Error Type          | Error Point                                         | Main Reasons                                                                                                                                                                                                                                                      |
|--------------|---------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 62           | Heatsink High error | Inverter PCB heatsink tem-<br>perature is over 95°C | Cooling Fan not operating.     Overload operation (Pipe clogging/<br>Covering/EEV defect/Ref. overcharge)     ODU fan locking     Heatsink assembly of INV PCB assemble<br>condition abnormal     Defect of temperature sensing circuit part<br>defect of INV PCB |



PFCM :

Measuring resistance

#### Measuring CT sensing Voltage

#### 1Ø Model

✤ PFCM Module checking method

(1) Set the multi tester to diode mode.

(2) Check resistance between No.19 pin and No.20 pin of PCB PFC module

(3) Resistance value should be in  $7k\Omega \pm 10\%$ .(at 25°C).

# between No.19,20 pin between No.19,20 pin

IPM :

Measuring resistance



#### Error Diagnosis and Countermeasure Flow Chart



PFCM :

Measuring resistance

between No.19,20 pin

#### Check method

#### 1Ø Model

- ✤ PFCM Module checking method
- ① Set the multi tester to diode mode.
- (2) Check resistance between No.19 pin and No.20 pin of PCB PFC module
- ③ Resistance value should be in 7kΩ ±10%.(at 25°C)
- (4) Check PFC Module No.19,20 and IPM Module Pin soldering condition

IPM : Measuring resistance between No.19,20 pin

| 100 |
|-----|
|     |
| m   |
|     |
|     |
|     |
|     |
|     |
|     |
| -   |
|     |
|     |
| -   |
|     |

| defect/Ref.               | Q                   |
|---------------------------|---------------------|
| nage)<br>rmal (L,N)       | ıtdoor U<br>Control |
| le condition              | nit                 |
| mbly<br>ent sensing part) | Test Run            |
|                           | Check               |

| Error<br>No. | Error Type     | Error Point                                                                                            | Main Reasons                                                                                                                                                                                                     |  |
|--------------|----------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 67           | Fan Lock Error | Fan RPM is 10RPM or less<br>for 5 sec. when ODU fan<br>starts or 40 RPM or less<br>after fan starting. | <ol> <li>Fan motor defect / assembly condition<br/>abnormal</li> <li>Wrong connection of fan motor connector</li> <li>Reversing rotation after RPM target apply</li> <li>Inverter PCB assembly defect</li> </ol> |  |



 Fan Motor resistance measuring between each phase



#### Fan connection Check method





| Error No. | Error Type                                                         | Error Point                                                             | Main Reasons                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73        | AC input instant over cur-<br>rent error (Matter of soft-<br>ware) | Inverter PCB input power current is<br>over 2ms<br>* 1 PHASE : 48A peak | <ol> <li>1.Overload operation (Pipe clog-<br/>ging/Covering/EEV defect/Ref.<br/>overcharge)</li> <li>2.Compressor damage(Insulation<br/>damage/Motor damage)</li> <li>3.Input voltage abnormal (L,N)<br/>(R,S,T,N)</li> <li>4.Power line assemble condition<br/>abnormal</li> <li>5.Inverter PCB assembly<br/>damage(input current sensing part)</li> </ol> |

# Introduction

#### 1Ø Model

Measuring input voltage







Inverter PCB assembly/Wiring power to inverter PCB on Noise filter



Inverter PCB assembly power connection



Noise filter power connection

| Error No. | Error Type               | Error Point         | Main Reasons                              |
|-----------|--------------------------|---------------------|-------------------------------------------|
| 86        | Main PCB EEPROM<br>Error | EEPROM Access Error | 1. No EEPROM<br>2. EEPROM wrong insertion |

#### Error Diagnosis and Countermeasure Flow Chart





Note : Replace after power off.

0000

. . . .

| Error No.                                                                   | Error Type | Error Point                                      | Main Reasons                                                                                                                              |  |
|-----------------------------------------------------------------------------|------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Outdoor unit liquid pipe<br>113 (condenser) temperature<br>sensor error (Op |            | Abnormal sensor resistance value<br>(Open/Short) | Defective temperature sensor con-<br>nection     Defective temperature sensor<br>(Open / Short)     Short)     Defective outdoor unit PCB |  |
| Error No. Error Type                                                        |            |                                                  |                                                                                                                                           |  |
| Error No.                                                                   | Error Type | Error Point                                      | Main Reasons                                                                                                                              |  |



\* Sensor resistance 100 k $\Omega$  over (open) or 100  $\Omega$  below (short) will generate error

 Note: Temperate sensor resistance vary with temperature, So compare temperature sensor resistance value according to outdoor unit temperature by referring below table (±5% tolerance)

 Air temperature sensor: 10°C = 20.7kΩ : 25°C = 10kΩ : 50°C= 3.4kΩ

 Pipe temperature sensor: 10°C = 10kΩ : 25°C = 5kΩ : 50°C= 1.8kΩ

| Erro<br>No | Error Type                                          | Error Point                                         | Main Reasons                                                                                                                                                                                                                            |
|------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | Function error of outdoor<br>4way (reversing valve) | Function error of 4way<br>(reversing valve) in Main | <ol> <li>Wrong operation of 4way valve because of sludge<br/>etc. inflow</li> <li>No pressure difference because of compressor<br/>fault</li> <li>Wrong installation of In/outdoor common pipe</li> <li>Defect of 4way valve</li> </ol> |

#### Error diagnosis and countermeasure flow chart



Volt

4.72 4.62

4.492 4.336 4.149 3.931 3.685

3.416 3.131

2.838 2.546 2.262 1.994 1.745

1.519 1.316 1.137 0.981 0.846

0.729 0.628 0.542 0.469 0.406 0.353

0.307

\* Measure the resistance of 4way valve



Location of 4way valve connector on Main PCB(marked as 4way,CN09)







096 \_trouble shooting guide book

\*\*\* Check the output voltage of terminal socket during heating operation



# 3. Sensor Resistance Table

#### Sensor resistance table

| Pipe Ter | mp     |            |       |     | Air Temp   |            |
|----------|--------|------------|-------|-----|------------|------------|
| B Cor    | nstant | 3977       |       | ] [ | B Constant | 3977       |
| Std T    | emp    | 25         |       |     | Std Temp   | 25         |
| Resis    | tance  | 5          |       |     | Resistance | 10         |
| Ter      | mp     | Resistance | Volt  |     | Temp       | Resistance |
| -3       | 0      | 102.17     | 4.714 |     | -30        | 204.35     |
| -2       | !5     | 73.49      | 4.611 |     | -25        | 146.97     |
| -2       | :0     | 53.55      | 4.481 |     | -20        | 107.09     |
| -1       | 5      | 39.5       | 4.322 |     | -15        | 79         |
| -1       | 0      | 29.48      | 4.131 |     | -10        | 58.95      |
| -        | 5      | 22.24      | 3.91  |     | -5         | 44.47      |
| (        | )      | 16.95      | 3.661 |     | 0          | 33.9       |
| 5        | 5      | 13.05      | 3.389 |     | 5          | 26.09      |
| 1        | 0      | 10.14      | 3.102 |     | 10         | 20.27      |
| 1        | 5      | 7.94       | 2.808 |     | 15         | 15.89      |
| 2        | 0      | 6.28       | 2.515 |     | 20         | 12.55      |
| 2        | 5      | 5          | 2.232 |     | 25         | 10         |
| 3        | 0      | 4.01       | 1.965 |     | 30         | 8.03       |
| 3        | 5      | 3.24       | 1.717 |     | 35         | 6.49       |
| 4        | 0      | 2.64       | 1.493 |     | 40         | 5.28       |
| 4        | 5      | 2.16       | 1.293 |     | 45         | 4.32       |
| 5        | 0      | 1.78       | 1.116 |     | 50         | 3.56       |
| 5        | 5      | 1.48       | 0.962 |     | 55         | 2.95       |
| 6        | 0      | 1.23       | 0.828 |     | 60         | 2.46       |
| 6        | 5      | 1.03       | 0.714 |     | 65         | 2.06       |
| 7        | 0      | 0.87       | 0.615 |     | 70         | 1.74       |
| 7        | 5      | 0.74       | 0.531 |     | 75         | 1.47       |
| 8        | 0      | 0.63       | 0.459 |     | 80         | 1.25       |
| 8        | 5      | 0.54       | 0.397 |     | 85         | 1.07       |
| 9        | 0      | 0.46       | 0.345 |     | 90         | 0.92       |
| 9        | 5      | 0.4        | 0.3   |     | 95         | 0.79       |
| 10       | 00     | 0.34       | 0.262 |     | 100        | 0.68       |

# THERMAV

Heatsink Temp

D-Pipe Temp

| [ | B Constant | 3970       |      | B Constant | 3500       |       |
|---|------------|------------|------|------------|------------|-------|
|   | Std Temp   | 25         |      | Std Temp   | 25         |       |
|   | Resistance | 10         |      | Resistance | 200        |       |
|   | Temp       | Resistance | Volt | Temp       | Resistance | Volt  |
|   | -30        | 102.17     | 4.71 | -30        | 2845.99    | 4.969 |
|   | -25        | 73.49      | 4.61 | 0          | 585.66     | 4.851 |
|   | -20        | 53.55      | 4.48 | 5          | 465.17     | 4.814 |
|   | -15        | 39.5       | 4.32 | 10         | 372.49     | 4.77  |
|   | -10        | 29.48      | 4.13 | 15         | 300.58     | 4.717 |
|   | -5         | 22.24      | 3.91 | 20         | 244.33     | 4.657 |
|   | 0          | 16.95      | 3.66 | 25         | 200        | 4.587 |
|   | 5          | 26.05      | 4.73 | 30         | 164.79     | 4.508 |
|   | 10         | 20.25      | 4.66 | 35         | 136.64     | 4.418 |
|   | 15         | 15.87      | 4.57 | 40         | 113.98     | 4.318 |
|   | 20         | 12.55      | 4.47 | 45         | 95.62      | 4.208 |
|   | 25         | 10         | 4.35 | 50         | 80.65      | 4.088 |
|   | 30         | 8.03       | 4.21 | 55         | 68.38      | 3.958 |
|   | 35         | 6.49       | 4.06 | 60         | 58.27      | 3.82  |
|   | 40         | 5.28       | 3.89 | 65         | 49.88      | 3.674 |
|   | 45         | 4.33       | 3.71 | 70         | 42.9       | 3.522 |
|   | 50         | 3.57       | 3.52 | 75         | 37.05      | 3.365 |
|   | 55         | 2.96       | 3.32 | 80         | 32.14      | 3.205 |
|   | 60         | 2.47       | 3.11 | 85         | 27.99      | 3.043 |
|   | 65         | 2.07       | 2.9  | 90         | 24.46      | 2.88  |
|   | 70         | 1.74       | 2.69 | 95         | 21.46      | 2.719 |
|   | 75         | 1.48       | 2.48 | 100        | 18.89      | 2.561 |
|   | 80         | 1.26       | 2.28 | 110        | 14.79      | 2.255 |
|   | 85         | 1.07       | 2.09 | 120        | 11.72      | 1.972 |
|   | 90         | 0.92       | 1.9  | 130        | 9.4        | 1.716 |
|   | 95         | 0.8        | 1.73 | 140        | 7.62       | 1.487 |
|   | 100        | 0.69       | 1.57 | 150        | 6.24       | 1.287 |
|   |            |            |      |            |            |       |

# III. Function

| 1. List of Function          | 100 |
|------------------------------|-----|
| 2. Remote Controller feature | 102 |
| 3. Special Function          | 104 |
| 4. Installer Setting         | 106 |

# 1. List of Function

#### Indoor Unit

| Category                  | Function                                      | ARNH08GK3A2         |
|---------------------------|-----------------------------------------------|---------------------|
|                           | Drain pump                                    | X                   |
|                           | E.S.P. control                                | X                   |
| Installation              | Electric heater                               | X                   |
|                           | High ceiling operation                        | X                   |
|                           | Auto Elevation Grille                         | X                   |
|                           | Hot start                                     | X                   |
| Reliability               | Self diagnosis                                | 0                   |
|                           | Soft dry operation                            | X                   |
|                           | Auto changeover                               | X                   |
|                           | Auto cleaning                                 | X                   |
|                           | Auto operation(artificial intelligence)       | X                   |
|                           | Auto Restart                                  | 0                   |
|                           | Child lock                                    | 0                   |
| Convenience               | Forced operation                              | X                   |
|                           | Group control                                 | 0                   |
|                           | Sleep mode                                    | X                   |
|                           | Timer(on/off)                                 | 0                   |
|                           | Timer(weekly)                                 | 0                   |
|                           | Two thermistor control                        | Х                   |
|                           | Standard Wired remote controller              | 0                   |
|                           | Deluxe wired remote controller                | X                   |
| Individual                | Simple wired remote controller                | X                   |
| CONTROL                   | Simple Wired remote controller(for hotel use) | X                   |
|                           | Wireless remote controller                    | X                   |
|                           | General central controller (Non LGAP)         | X                   |
|                           | Network Solution(LGAP)                        | 0                   |
| CAC network function      | Dry contact                                   | PQDSA(1) / PQDSB(1) |
|                           | PDI(power distribution indicator)             | Х                   |
|                           | PI 485(for Indoor Unit)                       | Х                   |
|                           | Zone controller                               | X                   |
| Special function kit      | CTI(Communication transfer interface)         | X                   |
|                           | Electronic thermostat                         | Х                   |
| Othere                    | Remote temperature sensor                     | PQRSTA0             |
| Others                    | Telecom shelter controller                    | Х                   |
|                           | Anti-condensation on floor(cooling)           | X                   |
|                           | Water pump on / off Control                   | 0                   |
|                           | Flow switch control                           | 0                   |
|                           | Thermostat interface (230V AC)                | 0                   |
| Ale to Minter Hand During | Thermostat interface (24V AC)                 | Х                   |
|                           | Sanitary tank heating                         | 0                   |
| Air to water Heat Pump    | Solar-thermal interface with sanitary tank    | X                   |
| FUNCTIONS                 | PHEX anti-freezing control                    | 0                   |
|                           | Water pump forced operation                   | 0                   |
|                           | Autosetting according to ambient temperature  | 0                   |
|                           | Slient operation                              | X                   |
|                           | Anti-overheating of water pipe                | 0                   |
|                           | Emergency operation                           | 0                   |

#### Notes

O : Applied, X : Not applied

Accessory model name : Installed at field, ordered and purchased separately by the corresponding model name, supplied with separate package.

#### Outdoor Unit

| Category                | Function                                | AHUW166T0 |
|-------------------------|-----------------------------------------|-----------|
|                         | Defrost/ Deicing                        | 0         |
|                         | High pressure switch                    | 0         |
|                         | Phase protection                        | 0         |
| Reliability             | Restart delay(3-minutes)                | 0         |
|                         | Self diagnosis                          | 0         |
|                         | Soft start                              | 0         |
|                         | Trial operation                         | 0         |
| Convonionco             | Auto operation(Artificial intelligence) | 0         |
| Convenience             | Auto restart operation                  | 0         |
| CAC network<br>Function | Network Solution(LGAP)                  | 0         |

O : Applied X : Not applied - : No reation

Option : Model name & price are different according to options, and assembled in factory with main unit Accessory : Installed at field, ordered and purchased separately by the corresponding model name, supplied with separated package.

| Category    | Function                          | AHUW166T0                |
|-------------|-----------------------------------|--------------------------|
|             | Power Distribution Indicator(PDI) | PQNUD1S40                |
|             | Dry contact(Indoor Unit)          | PQDSA                    |
|             | ODU Dry Contact                   | PQDSBCDVM0               |
|             | AC Smart II                       | PQCSW320A1E, PQCSW421E0A |
| CAC Network | ACP                               | PQCPC22N0, PQCPC22A0     |
|             | AC Manager                        | PQCSSA21E0               |
|             | LONWORKS Gateway (BNU-LW)         | PLNWKB000                |
|             | Remote controller                 | AWHP INSTALLATION KIT    |
|             | BACnet Gateway (BNU-BAC)          | PQNFB17C0                |
| Program     | LG MV                             | Option                   |
| Other       | Air Guide                         | Accessory                |
| Culo        | Refrigerant Charging Kit          | PRAC1                    |

O : Applied X : Not applied - : No reation

Option : Model name & price are different according to options, and assembled in factory with main unit Accessory : Installed at field, ordered and purchased separately by the corresponding model name, supplied with separated package.

# 2. Remote Controller feature

#### Emergency Control



Easy checking of system failure - Slight / Heavy trouble

Emergency operating

- Heavy trouble

- Secure at least heating before A/S

#### Easy Setting Feature



\* 'Solar Thermal Temp' function may not be operated and displayed

#### Remote Controller

#### Controller Configuration



| No | Name                                     |
|----|------------------------------------------|
| 1  | Display                                  |
| 2  | Change Temperature Button                |
| 3  | Water Heating Enable / Disable Button    |
| 4  | Power Button                             |
| 5  | Operation Mode Selection Button          |
| 6  | Silent Mode On / Off Button              |
| 7  | Temperature Setting Mode Button          |
| 8  | Temperature View Mode Button             |
| 9  | Function Setting Button                  |
| 10 | Programming Button                       |
| 11 | Direction Button (Up, Down, Left, Right) |
| 12 | Set / Clear button                       |
| 13 | ESC Button                               |

\* Gray painted function may not be operated and displayed

#### Display Panel

| OPERATION    | SILENT      | SET TEMP VIEW TEMP  |
|--------------|-------------|---------------------|
| ** -☆- ∰     | Zon         |                     |
| STATUS       | HOT WATER   | <b>III</b> *        |
| -wi-wz 🖓 🕼 🔅 | $\Re$       | 100                 |
| *백상 🕮 윤 🕸    | RESERVATION | SIMPLE SLEEP ON OFF |
|              |             |                     |

| 4/4 | Cooling                   | ₩2       | Electric Heater (2)                 | 8            | Defrost                  |
|-----|---------------------------|----------|-------------------------------------|--------------|--------------------------|
| -)  | -Ċ- Heating               | ふ        | Water Tank Electric Heater          | 他            | Water-Pipe Anti Freezing |
| 1   | Weather-dependent Heating | ß        | Water Pump                          | œ            | Water Tank Disinfection  |
| 1   | Space Temp.               | ÷.       | Solar Thermal circulation pump      |              | Outdoor Unit             |
| Ę   | Water Inlet Temp.         |          | Water Tank Heating Enable / Disable | ÷            | Child Lock               |
| (   | User Outlet Temp.         | <u>f</u> | Water Tank Heating (by Heat Pump)   | ø            | Not Available Function   |
| (   | Central Controller        | ·Den     | Silent Mode ON / OFF                | $\wedge$     | Slight Trouble           |
| 6   | Thermostat                | 생        | Water Tank Temp.                    | $\mathbb{A}$ | Heavy Trouble            |
| -1  | Wi Electric Heater (1)    | :ĊIJ     | Solar Heating Temp.                 |              |                          |

\* Grey painted functions may not be operated and displayed.

### 3. Special Function

#### Child Lock Function

This function prevents children or others from tampering with the control buttons on the unit.

· All the buttons on indoor display panel will blocked.

The function is used to restrict children to not to use the Hydro Kit carelessly.(CL is an abbreviated form of Child Lock.)



#### Sleep Timer Operation

- When the sleep time is reached after <1,2,3,4,5,6,7,0(cancel) hr> is input by the remote controller while in appliance operation, the operation of the appliance stops.
- While the appliance is on pause, the sleep timer mode cannot be input.

#### Timer(On/Off)

#### **On-Timer Operation**

- When the set time is reached after the time is input by the remote controller, the appliance starts to operate.
- The timer LED is on when the on-timer is input. It is off when the time set by the timer is reached.
- If the appliance is operating at the time set by the timer, the operation continues.

#### **Off-Timer Operation**

- · When the set time is reached after the time is input by the remote controller, the appliance stops operating.
- The timer LED is on when the off-timer is input. It is off when the time set by the timer is reached.
- If the appliance is on pause at the time set by the timer, the pause continues.

#### Weekly Program

- · If necessary, an operator can make an On/Off reservation of the product for a period of one week.
- On/Off schedule of operation for a period of One week.
- No need to turn the unit On/Off manually during working days. On/Off time is scheduled in micom of the wired remote control.

#### **Operation Time Table (Example)**

| Setting | Mon            | Tue            | Wed            | Thu            | Fri            | Sat | Sun |  |
|---------|----------------|----------------|----------------|----------------|----------------|-----|-----|--|
| Temp.   | 25°C<br>(77°F) | 25°C<br>(77°F) | 25°C<br>(77°F) | 25°C<br>(77°F) | 25°C<br>(77°F) |     |     |  |
| On      | 09:00          | 08:00          | 09:00          | 08:00          | 09:00          | C   | ff  |  |
| Off     | 12:00          | 17:00          | 12:00          | 12:00          | 12:00          |     |     |  |

# 4. Installer Setting

#### ■ How to enter installer setting mode

# 

Installer setting mode is to set the detail function of the remote controller.

If the installer setting mode is not set correctly, it could cause problems to the unit, user injury or property damage. This must be set by an certificated installer, and any installation or change that is carried out by a non-certificated person should be responsible for the results. In this case, free service cannot be provided.



initially, function code is displayed on the bottom of the LCD screen.) Repeat pressing button, and the function code

will be changed from 01 to 2B. Please refer the code table on the next page.

#### Summary

Example of Fuction Gode Display



| Function                                                        | Default    | Value #1                                                    | Value #2                                                    | Remark |
|-----------------------------------------------------------------|------------|-------------------------------------------------------------|-------------------------------------------------------------|--------|
| Disable 3 Min. Delay                                            | 02:01      | 01                                                          | -                                                           |        |
| Remote Air Sensor Connection                                    | 03:01      | 01 : NOT connected.<br>02 : connected.                      | -                                                           |        |
| Celsius/Fahrenheit Switching                                    | 04:01      | 01 : Celsius<br>02 : Fahrenheit                             | -                                                           |        |
| Setting Temp. Selection                                         | 05:02      | 01 : Air Temp.<br>02 : Leaving water Temp.                  | -                                                           |        |
| Auto Dry Contact                                                | 06:01      | 01 : Auto Start OFF<br>02 : Auto Start ON                   | -                                                           |        |
| Address Setting                                                 | 07:00      | 00 ~ FF                                                     | -                                                           |        |
| Override Setting                                                | 08:00      | 00 : Slave<br>01 : Master                                   | -                                                           |        |
| Water Pump Test Run                                             | 09:00      | 01 : Set                                                    |                                                             |        |
| Setting Air Temp.<br>(Heating Mode)                             | 13:030:016 | 24°C(75°F) ~ 30°C(86°F)<br>: Upper Limit of setting range   | 16°C(60°F) ~ 22°C(71°F)<br>: Lower Limit of setting range   |        |
| Setting Leaving Waer Temp.<br>(Heating Mode)                    | 14:080:046 | 50°C(122°F) ~ 80°C(176°F)<br>: Upper Limit of setting range | 30°C(86°F) ~ 46°C(114°F)<br>: Lower Limit of setting range  |        |
| Setting Sanitary Tank Water Temp.<br>(Sanitary Water Heating)   | 15:080:046 | 50°C(122°F) ~ 80°C(176°F)<br>: Upper Limit of setting range | 30°C(86°F) ~ 46°C(114°F)<br>: Lower Limit of setting range  |        |
| Setting outdoor Temp. range<br>(Weather-dependent operation)    | 23:-10:015 | 10°C(50°F) ~ 20°C(68°F)<br>: Upper Limit of setting range   | -20°C(-4°F) ~ 05°C(41°F)<br>: Lower Limit of setting range  |        |
| Setting indoor air Temp. range<br>(Weather-dependent operation) | 24:021:016 | 20°C(68°F) ~ 30°C(86°F)<br>: Upper Limit of setting range   | 16°C(60°F) ~ 19°C(66°F)<br>: Lower Limit of setting range   |        |
| Setting leaving water Temp.<br>(Weather-dependent operation)    | 25:080:046 | 65°C(149°F) ~ 80°C(176°F)<br>: Upper Limit of setting range | 40°C(104°F) ~ 54°C(129°F)<br>: Lower Limit of setting range |        |
| Setting start/maintain time                                     | 26:000     | 00 : Disable<br>01 : Enable                                 | -                                                           |        |
| (Disinfection Operation)                                        | 26:006:023 | 01~07 : Starting Date<br>(01:Sun, 02:Mon,, 07:Sat)          | 00~23 hours<br>: Starting Time in 24 hours                  |        |
| Setting Temp.<br>(Disinfection Operation)                       | 27:070:010 | 40°C(104°F) ~ 70°C(129°F)70<br>: Maximum heating Temp.      | 05~60 min<br>: Maximum heating duration                     |        |
| Setting control parameter<br>(Sanitary water heating operation) | 28:005:080 | 01°C(33°F) ~ 20°C(68°F)<br>: Temp. gap from Value #2        | 50°C(122°F) ~ 80°C(176°F)                                   |        |
| Setting control parameter<br>(Sanitary water heating operation) | 29:003:000 | 02°C(35°F) ~ 04°C(39°F)                                     | 00~01                                                       |        |
| Setting sanitary water heating timers                           | 2b:030     | 5 ~ 95 min (step: 5 min)                                    | -                                                           |        |
| ,                                                               | 2b:180:020 | 0 ~ 600 min (step: 30 min)                                  | 20 ~ 95 min (step: 5 min)                                   |        |
| Changing thermal on/off room air Temp.                          | 2E:00      | 00~03                                                       |                                                             |        |
| Changing thermal on/off leaving water<br>Temp.                  | 2F:00      | 00~03                                                       | -                                                           |        |
| Program version                                                 | 30:***     | Display Version number                                      | -                                                           |        |

\*Temp. = Temperature

Introduction

Test

Run

#### Common Setting

- Function Code 02 : Disable 3 minute Delay Only used for an inspection in a factory.
- Function Code 03 : Remote Air Sensor Connection
- If remote air sensor is connected to control the unit by room air temperature, the connection information should be notified to the unit.
- Note : If remote air sensor is connected but this function code is not set correctly, the unit can not be controlled by room air temperature.
- Function Code 04 : Celsius/Fahrenheit Switching Temperature is displayed in Celsius or Fahrenheit.

#### • Function Code 05 : Setting Temperature Selection

The unit can be operated according to air temperature or leaving water temperature. The selection for setting temperature as air temperature or leaving water temperature is determined.

- Note : Air temperature as setting temperature is ONLY available when Remote Air Sensor Connection is enabled and Function Code 03 is set as 02.
- · Function Code 06 : Auto Dry Contact

This function enables the Dry Contact to operate under Auto Run mode or Manual mode with remote controller. If thermostat is used, value should be changed from "2" to "1".

Function Code 07 : Address Setting

When Central Controller is installed, address assigning is set by this function.

#### Function Code 08 : Override Setting

Override master/slave selection function is to prevent the unit's different mode operation. If the unit is set as the slave, it blocks a change of opposite operating mode(cooling/heating).

- \* To use override master/slave selection function is only possible when units are connected in series to the outdoor unit.
- Function Code 09 : Water Pump Test Run After water pipe work is done, Water Pump Test Run mode should be performed to check whether water circulation is normal.



#### Temperature Range Setting

• Function Code 13 : Setting Air Temperature in Heating Mode Determine heating setting temperature range when air temperature is selected as setting temperature.

# 

Only available when remote air temperature sensor is connected. • Accessory PQRSTA0 should be installed.

- · Also, Function Code 03 should be set properly.
- Function Code 14 : Setting Leaving Water Temperature in Heating Mode
   Determine heating setting temperature range when leaving water temperature is selected as setting temperature.
- Function Code 15 : Setting Sanitary Tank Leaving Water Temperature Determine heating setting temperature range of water tank leaving water.

#### NOTICE

Only available when sanitary water tank temperature sensor is installed.

Sanitary water tank and sanitary water tank kit should be installed.
DIP switch No. 2 and 3 should be set properly.

Introduction

#### Temperature Control Parameter Setting and Etc.

· Function Code 23, 24, and 25 : Setting Weather-dependent operation

Weather-dependent operation is that the unit automatically adjusts target temperature (leaving water or room air) according to the outdoor air temperature.

- Value #1 and Value #2 of Function Code 23 : range of outdoor air temperature
- Value #1 and Value #2 of Function Code 24 : range of auto-adjustable target room air temperature
- Value #1 and Value #2 of Function Code 25 ; range of auto-adjustable target leaving water temperature

Note : Weather-dependent operation is applied for heating mode only.



#### · Function Code 26 and 27 : Setting Disinfection operation

Disinfection operation is special sanitary tank operation mode to kill and to prevent growth of viruses inside the tank.

- Value #1 of Function Code 26 : Selecting disinfection operation mode. '00' for setting disinfection mode off, and '01' for setting disinfection mode on.
- Value #2 of Function Code 26 : Determining the date when the disinfection mode is running. '01' for Sunday, '02' for Monday, ..., and '06' for Saturday.
- Value #3 of Function Code 26 : Determining the time when the disinfection mode is running. '00' for 0:00am, '01' for 01:00am, ..., '22' for 10:00pm, and '23' for 11:00pm.
- Value #1 of Function Code 27 : Target temperature of disinfection mode.
- Value #2 of Function Code 27 : Duration of disinfection mode.



#### WARNING

#### Vales of Function Code 26

- If Value #1 of Function Code 26 is set as '00'. Value #2 and Value #3 is not used.
- When Value #1 is set as '01'. Value #2 is displayed at the position of Value #1 and Value #3 is displayed at the position of Value #2 due to limited width of the control panel display.

### CAUTION

#### Sanitary water heating should be enabled

· If sanitary water heating is disabled, the disinfection mode will not be operated although Value #1 of Code 26 is set as '01'. · To use disinfection mode, sanitary water heating should be enabled.



Press repeatedly 🗐 Button to enable sanitary

· Function Code 28 and 29 : Setting control parameter for sanitary water heating operation

- Descriptions for each parameters are as following.
- Value #1 of Function Code 28 : temperature gap from Value #2 of Function Code 28.
- Value #2 of Function Code 28 : maximum temperature.
- Example : If Value #1 is set as '5' and Value #2 is set as '80', then water tank heating will be started when the water tank temperature is below 75°C(167°F).
- Value #1 of Function Code 29 : temperature gap from target sanitary water temperature.
- Value #2 of Function Code 29 : Determining heating demand priority between sanitary water tank heating and under floor heating.
- Example : If user's target temperature is set as '50' and Value #1 is set as '3', then water tank heating will be turned off when the water temperature is above 53°C(127°F). Water tank heating will be turned on when the water temperature is below 50°C(122°F).
- Example : If Value #2 is set as '0', that means heating priority is on sanitary water heating. In this case the under floor can not be heated while sanitary water heating. On the other hand, if the Value #2 is set as '1', that means heating priority is on under floor heating, sanitary tank can not be heated while under floor heating.

#### NOTICE

Sanitary water heating does not operate when it is disabled.

Enabling / Disabling sanitary water heating is determined by pushing [1] button.

When  $\widehat{m}$  icon is displayed on the remote controller, sanitary water heating is enabled. (by button input or scheduler programming)

· Function Code 2B : Setting sanitary water heating timers

Determine time duration : Operation time and stop time of sanitary tank heating.

- Value #1 of Function Code 2B : This time duration defines how long sanitary tank heating can be continued.

- Value #2 of Function Code 2B : This time duration defines how long sanitary tank heating can be stopped. It is also regarded as time gap between sanitary tank heating cycle.

- Example of timing chart :



• Function Code 2E and 2F : Changing thermal on/off temperature Select Thermal on/off Temperature gap.

2E : Room Air temperature

|   | Th On  | Th Off |
|---|--------|--------|
| 0 | -0.5°C | 1.5°C  |
| 1 | 4°C    | 6°C    |
| 2 | 2°C    | 4°C    |
| 3 | -1°C   | 1°C    |

| 2F | : | Leaving | Water | temperature |  |
|----|---|---------|-------|-------------|--|
|----|---|---------|-------|-------------|--|

Th On

|   | mon  | III OII |
|---|------|---------|
| ) | -2°C | 2°C     |
|   | -6°C | 4°C     |
| 2 | -2°C | 4°C     |
| 3 | -1°C | 1°C     |
|   |      |         |

• Function Code 30 : Remote Controller Program Version Display Remote Controller Program Version.

# THERMAV

# **IV. Outdoor Unit Control**

| 1. Basic Control      | 116 |
|-----------------------|-----|
| 2. Special Control    | 118 |
| 3. Protection Control | 120 |
| 4. Other Control      | 122 |



### 1. Basic Control

#### Normal Ooperation

| Actuator                                    | Heating operation | Stop state                                       |  |
|---------------------------------------------|-------------------|--------------------------------------------------|--|
| Compressor                                  | Fuzzy control     | Stop                                             |  |
| Fan                                         | Fuzzy control     | Stop                                             |  |
| Main EEV                                    | Fuzzy control     | Close                                            |  |
| 4 way valve                                 | ON                | 1 hour after stop & outdoor temp.<br><27°C ➡ OFF |  |
| Subcooling<br>EEV                           | Fuzzy control     | Close                                            |  |
| Indoor Unit<br>EEV Subcooling fuzzy control |                   | Before 10min : Stop<br>After 10min : Stop        |  |
|                                             |                   |                                                  |  |

Note : Heating operation is not functional at an outdoor air temperature of 27°C or more. And High pressure 3540kpa over

#### Comporessor Control

Fuzzy control : Maintain evaporating temperature(Te) to be constant on cooling mode and condensing temperature(Tc) on heating mode by Fuzzy control to ensure the stable system performance. (Tc:47 ~51°C, Te:2 ~ 5°C) (1) Heating mode Tc can be set by initial DIP switch setting. (Standard, Long pipe)

Note: By setting DIP switch, Te and Tc are decided simultaneously.



#### ■ EEV(Electronic Expansion Valve) Control

| 1) | EEV control                                                                                         |
|----|-----------------------------------------------------------------------------------------------------|
|    | EEV operates with fuzzy control rules to keep the degree of super Heat(Superheat) (about 3°C)at the |
|    | evaporator outlet stable during heating mode                                                        |
|    | The degree of Superheat = Tsuction - Tevaporation                                                   |
|    | Tsuction : temperature at suction pipe sensor(°C)                                                   |
|    | Tevaporation : evaporation temperature equivalent to low pressure(°C)                               |
|    |                                                                                                     |
| 21 | Subcooling FEV control(about 15°C)                                                                  |

(2) Subcooling EEV control(about 15°C) Subcooling EEV works with fuzzy rules to keep the degree of Subcool at the outlet of subcooler The degree of Subcool = Tsubcool\_out - Tevaporation Tsubcool\_out : temperatrue at outlet of subcooler(°C) Tevaporation: evaporation temperature equivalent to low pressure(°C)

# 2. Special Control

#### Defrost

Defrost operation eliminates ice attached on heat exchanger, recovering performance of heat exchanger. Each cycle component operates as following table during defrost operation.

#### Outdoor Unit

| Component            | Starting       | Running                        | Ending         |
|----------------------|----------------|--------------------------------|----------------|
| Inverter compressor  | 30Hz           | Setting Value                  | 30Hz           |
| Fan Normal control   |                | 0Hz ' Normal control ' 700 RPM | Normal control |
| Main EEV             | Normal control | Max. pulse                     | 200 pulse      |
| Subcooling EEV       | Normal control | Normal control                 | Normal control |
| 4way valve           | ON             | ON ' OFF ' ON                  | ON             |
| Hot gas bypass valve | ON             | ON                             | ON             |

#### Indoor Unit

| Component         Starting           Thermo on unit EEV         Normal control           Thermo off unit EEV         Min. pulse |     | Running    | Ending         |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----|------------|----------------|--|
|                                                                                                                                 |     | 1200 pulse | Normal control |  |
|                                                                                                                                 |     | 1200 pulse | Min. pulse     |  |
| Oil return signal                                                                                                               | OFF | ON         | OFF            |  |

#### Ending condition

1) All heat exchanger pipe temperature are above 15°C(U3) for 30 sec.

2) The running time of defrost operation is over 30% of the total heating time

3) If compressor protection control starts by high discharge temperature of compressor etc.

#### Stopping operation on cooling mode

| Component            | Operation  | Note                                         |
|----------------------|------------|----------------------------------------------|
| Inverter compressor  | 0Hz        | -                                            |
| Fan                  | Stop       | -                                            |
| Main EEV             | Min. pulse | -                                            |
| Subcooling EEV       | Min. pulse | -                                            |
| 4way valve           | OFF        | After 60 min. , outdoor temp < $27^{\circ}C$ |
| Hot gas bypass valve | OFF        | After 15 min.<br>(Before 15 min. : ON)       |

# ■ Intermediate Temperature for Maximum COP of Cascade Cycle (R410A & R134a)

#### **Outdoor Cycle Target High Pressure Graph**

#### 3500 Target Temperauter 80°C 3000 - Target Temperauter 70°C Target Temperauter 60°C Target R410A High Pressure [kPa] Target Temperauter 50°C 2500 Target Temperauter 40°C Target Temperauter 30°C 2000 1500 1000 500 -20 -15 -10 -5 15 20 25 30 35 0 5 10 Outdoor Temperature [°C]

Introduction

Test

#### Pressure Protection Control

#### Pressure control on heating mode

#### High pressure control

| Pressure range(kPa) | Compressor     | Fan            |
|---------------------|----------------|----------------|
| Ph ≥ 4003           | Stop           | Stop           |
| Ph > 3415           | -5Hz/4 sec.    | -50RPM/4 sec.  |
| Ph < 3317           | Normal control | Normal control |
|                     |                |                |
| Pressure range(kPa) | Hot Gas        | ]              |

| ÷ , ,                |     |
|----------------------|-----|
| Ph ≥ 3448            | ON  |
| Ph < Target pressure | OFF |

Ph : high pressure

#### Low pressure control

| Pressure range(kPa)  | Compressor     | Fan            |
|----------------------|----------------|----------------|
| PI ≤ 190 after 1min. | Stop           | Stop           |
| PI ≤ 190 before 1min | -5Hz/4 sec.    | +100RPM/4 sec. |
| Pl > 229             | Normal control | Normal control |
|                      |                |                |
| Proceuro rango(kPa)  | Hot Gas        | 1              |

| Pressure range(kPa) | Hot Gas |
|---------------------|---------|
| PI < 203            | ON      |
| Pl > 307            | OFF     |

#### P1 : low pressure

\* Frequency holding : frequency (or RPM) is not increasing ( can decrease )

#### ■ Discharge Temperature Control

#### Indoor unit control

| Temperature range | EEV                         |
|-------------------|-----------------------------|
| Tdis > 110°C      | +10% Open                   |
| Tdis > 100°C      | Emergency Control + 5% Open |
| Tdis ≤ 100°C      | Normal                      |

#### Outdoor unit control

| Temperature range | Compressor                        |
|-------------------|-----------------------------------|
| Tdis > 115°C      | System stop                       |
| Tdis > 108°C      | Frequency down                    |
|                   | Frequency Holding                 |
|                   | Frequency down enable             |
| Tdis > 100°C      | Limit control Frequency up enable |

#### Inverter Protection Control

| Indoor                   |         | Normal operation | Frequency down | System stop |
|--------------------------|---------|------------------|----------------|-------------|
| AC input current         | Heating | 14A or less      | 17A or more    | 20A or more |
| (RMS)                    | neaung  |                  |                |             |
| Compressor current(PEAK) |         | 14A or less      | 15A or more    | 25A or more |

| Out              | door          | Normal operation | Frequency down | System stop |  |
|------------------|---------------|------------------|----------------|-------------|--|
| AC input current | Heating       | 15A or less      | 16A or more    | 19A or more |  |
| (RMS)            |               |                  |                |             |  |
| Compressor of    | current(PEAK) | 15A or less      | 16A or more    | 25A or more |  |

\* AC input current is inverter input current except constant speed compressor current(Noise filter passed current)

#### Pressure Switch

- Main has pressure sensing switch in series between compressor and power relay.

- The state of pressure sensing switch is normally on. It has small electric current from 220V AC. Never touch the connecting terminal with hand nor short two wires directly.

Introduction

Test

### 4. Other Control

#### Initial Setup

There are 4 initial setup steps before running. All DIP switch setting must be completed before initial setup.

#### 16kW, Mini 1Ø Model

1) Step 1 : factory setting value display Factory setting value is displayed in 7 segment on PCB for 24sec. All DIP switches must be set properly before step 1.

Power is on

Outdoor Model code is displayed (3sec)



Heat pump : Display 2 is default value Cooling only : no display



31

Factory setting(25 is normal)

Model type



קב

 Step 2 : Communication check If all model code is displayed in 7 segment communication between outdoor units is normal.

3) Step 3 : PCB error check

main PCB is off.

- After 40 sec, error check begins.
- All errors of units are displayed in 7 segment.
- If communication between main PCB and inverter PCB isn't normal, 521 is displayed in 7-segment. If error is displayed, check corresponding wires.



#### Pump Down

This function gathers the refrigerant present in the system to ODU

Use this function to store refrigerant of system in ODU for leakage or IDU replacement.



#### Note

1. If III is displayed, close gas SVC valve of all ODU immediately.

2. If low pressure descends below 229 kPa, the system turns off automatically. Close the gas SVC valve immediately.



- 1.Use pump down function within guaranteed temperature range IDU : 20~32°C ODU : 5~40°C 2. Make certain that IDU doesn't run with thermo off mode during operation 3. Maximum operation time of pump down function is 30 min. (in case low pressure doesn't go down)
- 4. Press black+red button during operation to end pump down.(IDU,ODU off)



#### Vacuum Mode

This function is used for creating vacuum in the system after compressor replacement, ODU parts replacement or IDU addition/replacement.



#### Caution

ODU operation stops during vacuum mode. Compressor can't operate.

# THERMAY

#### Black Box Function

This function saves data immediately before the error occurs in the main PCB of outdoor unit, thus analysis of the error is possible.



#### ■ Saving process : LG MV Diagnosis Black Box saving





# V. Test Run Check

| 1, | Checking list of Initial Installation | 128 |
|----|---------------------------------------|-----|
| 2  | DIP Switch Setting                    | 131 |



### 1. Checking list of Initial Installation

#### Checks before Test Run

| 1 | Check to see whether there is any refrigerant leakage, and slack of power or transmission cable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Confirm that 500 V megger shows 2 MΩ or more between power supply terminal block and ground. Do not operate in the case of 2 MΩ or less.<br>NOTE: Never carry out megaohm check over terminal control board. Otherwise the control board would be broken.<br>Immediately after mounting the unit or after leaving it turned off for an extended length of time, the resistance of the insulation between the power supply terminal board and the ground may decrease to approx. 2 MΩ as a result of refrigerant accumulating in the internal compressor. If the insulation resistance is less than 2 MΩ, turn on the main power supply for more than 6 hours. That will make refrigerant evaporate so that makes insulation resistance increase. |
| 3 | Check if high/low pressure common pipe, liquid pipe and gas pipe valves are fully opened.<br>NOTE: Be sure to tighten caps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4 | Check if there are any problems in automatic addressing or not:<br>Check and confirm that there are no error messages in the display of indoor units or remote controls<br>and LED in outdoor units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# 

#### When cutting main power of the Multi V

- Always apply main power of the outdoor unit during use of product (cooling season/heating season).
- Always apply power before 6 hours to heat the crank case heater where performing test run after installation of product. It may result in burning out of the compressor if not preheating the crank case with the electrical heater for more than 6 hours.(In case of the outdoor temperature below 10°C)
- $\cdot$  When operating the unit after powering off, automatically run into in the preheat mode for 3 hours and "PH" is indicated on the outdoor unit 7-Segment.

# 

#### Preheat of compressor

- · Start preheat operation for 3 hours after supplying main power.
- In case that the outdoor temperature is low, be sure to supply power 6 hours before operation so that the heater is heated(insufficient heating may cause damage of the compressor.)

#### Checking list after initial installation

- 1) Check AWHP Air purge : Perform Air purge before operation.
- Check the direction of the inlet / outlet water pipes : Check whether the water pipes are connected properly according to the direction of inlet / outlet.
- 3) Turn the remote controller on 3 minutes after power connection because remote controller and communications between outdoor units and indoor units require several minutes after power on.
- 4) When outdoor temperature is or below 24 ℃ at the initial installation, set the initial operation mode as heating mode. This reduces inspection time of installation conditions.
- 5) Check the strainer inside of the unit twice a year.
- 6) Connect water pipes after cleaning contaminants inside of the pipes in the initial installation.

#### How to cope with Test Run Abnormality

#### The phenomena from main component failure

| Component      | Phenomenon                                                | Cause                                                              | Check method and Trouble shooting                                                                                                       |
|----------------|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                | Not operating                                             | Motor insulation broken                                            | Check resistance between terminals and chassis                                                                                          |
|                |                                                           | Strainer clogged                                                   | Change strainer                                                                                                                         |
| Compressor     |                                                           | Oil leakage                                                        | Check oil amount after opening oil port                                                                                                 |
|                | Stop during running                                       | Motor insulation failure                                           | Check resistance between terminals and chassis                                                                                          |
|                | Abnormal noise<br>during running                          | U-V-W misconnection                                                | Check compressor U-V-W connection                                                                                                       |
| Outdoor<br>fan | High pressure error<br>at cooling                         | Motor failure,<br>bad ventilation around<br>outdoor heat exchanger | Check the outdoor fan operation after being<br>turned the outdoor units off for some time.<br>Remove obstacles around the outdoor units |
|                | Heating failure, fre-<br>quent defrosting                 | Bad connector contact                                              | Check connector                                                                                                                         |
|                | No operating sound<br>at applying power                   | Coil failure                                                       | Check resistance between terminals                                                                                                      |
| Outdoor<br>EEV | Heating failure,<br>frozen outdoor heat<br>exchanger part | EEV clogged                                                        | Service necessary                                                                                                                       |
|                | Low pressure error<br>or discharge temper-<br>ature error | EEV clogged                                                        | Service necessary                                                                                                                       |

When system fault occurs, the error code is displayed at indoor unit display or remote control display.
 Reference the trouble shooting guide in the service manual.

When CH05/53/11 ERROR occurs, check if auto-addressing has done and communication wiring is ok.

Function

#### The Procedure of Automatic Addressing



# 2. DIP Switch Setting

As Air-to-Water Heat Pump (For High Temperature) is designed to satisfy various installation environment, it is important to set up system correctly. If not configured correctly, improper operation or degrade of performance can be expected.

#### DIP Switch Setting

#### Indoor



- Turn off electric power supply before setting DIP switch, There is risk of electric shock.
- DIP switch is turned on when pulled right.
- Always set DIP switch #6 to ON and #7 to OFF.
- Do not set DIP switch #2 to ON and #3 to OFF.
- If DIP switch is not set as below, the unit may not operate properly.

| Description                | DIP switch setting |   |   |   |   |   |   |   | Function                                 | Default |
|----------------------------|--------------------|---|---|---|---|---|---|---|------------------------------------------|---------|
| Description                | 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Function                                 | Delault |
| Installation<br>Scene      |                    | × | × |   |   |   |   |   | Floor heating only                       |         |
|                            |                    | × | • |   |   |   |   |   | vFloor heating + Hot water               | 0       |
|                            |                    | • | • |   |   |   |   |   | Hot water only                           |         |
| Emergency                  |                    |   |   | × |   |   |   |   | High temperature operation               | 0       |
| operation                  |                    |   |   | ٠ |   |   |   |   | Low temperature operation                |         |
| Water pump                 |                    |   |   |   | х |   |   |   | Water pump controlled with Hydro Kit     |         |
| control                    |                    |   |   |   | ٠ |   |   |   | Water pump NOT controlled with Hydro Kit | 0       |
| Thermostat con-<br>nection |                    |   |   |   |   |   |   | x | Thermostat NOT installed                 | 0       |
|                            |                    |   |   |   |   |   |   | ٠ | Thermostat installed                     |         |

#### Outdoor

#### Main PCB



- When outdoor unit is powered on after configuring the DIP switch, proper input of configuration value can be verified through 7-Segment.
- 2. This function is shown only for 2 seconds after turning on the power.
- Verification of outdoor unit configuration
  - After power is turned on, number are shown on 7-Segment consecutively
  - These numbers show the configuration status

#### In case of 1Ø, 16kW model

16

| NO. | Content                                   |
|-----|-------------------------------------------|
| 31  | Model code, 1~255                         |
| 5   | Nominal Capacity(HP)                      |
| 2   | 2 : heatpump<br>No display : cooling only |
| 25  | Normal                                    |
| 30  | Model type, 1~255                         |
|     | NO.<br>31<br>5<br>2<br>25<br>30           |

Capacity(kW) Model code Model type

31

30

#### Model Code Phase Capa

1Ø

<Initial shipping condition of DIP Switch>

| A | WARNING |
|---|---------|

- Main PCB power should be reset in order to recognize the changed function after handling the DIP switch for configuration of additional functions.
- Main PCB power should be reset after resetting the DIP switch for cancellation of additional function
- Please configure DIP switch properly. Otherwise, It can overstrain product during operation

# 

- 1. "X" mark means DIP switch must be off, Otherwise the function may not perates correctly.
- 2. If each DIP switch doesn't set correctly, unit will operate abnormally.
- 3. In case of proceeding test run, start after checking if all indoor unit is off.

#### Setting the DIP switch

If you set the DIP switch when power is on, the changed setting will not be applied immediately.
 The changed setting will be enabled only when Power is reset or by pressing Reset button.



|                          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|--------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| Short Pipe Length        | • | × |   |   |   |   |   |   |   |    |    |    |    |    |
| Long Pipe Length         | × | ٠ |   |   |   |   |   |   |   |    |    |    |    |    |
| Snow                     |   |   |   |   |   |   | × | ٠ | × |    |    |    |    |    |
| Forced Defrosting        |   |   |   |   |   |   | × | × | ٠ |    |    |    |    |    |
| Snow + Forced Defrosting |   |   |   |   |   |   | × | ٠ | ٠ |    |    |    |    |    |
| Pump Down                |   |   |   |   |   |   |   |   |   | ٠  |    |    |    | ×  |
| Vacuum Mode              |   |   |   |   |   |   |   |   |   |    | ٠  |    |    |    |

### 

- 1. "X" mark means DIP switch must be off. Otherwise the function may not operates correctly.
- 2. If each DIP switch doesn't set correctly, unit will operate abnormally.
- 3. In case of proceeding test run, start after checking if all indoor unit is off.

#### The Procedure of Automatic Addressing



#### How to connect central controller

- The communication lines connected to INTERNET terminal should be connected to central control of Outdoor unti with care for their polarity(  $A \rightarrow A, B \rightarrow B$  )
- Connect communication lines between outdoor unit and indoor units through the terminal block.
- When connecting communication line between outdoor unit and indoor units with shielded wire, connect the shield ground to the earth screw.
- When connecting the central control system with shielded wire, connect the shield ground to the earth screw.



#### NOTICE

#### **Emergency Operation**

#### · Definition of terms

- Trouble : a problem which can stop system operation, and can be resumed temporally under limited operation without certificated professional's assist.
- Error : problem which can stop system operation, and can be resumed ONLY after certificated professional's check.
- Emergency mode : temporary heating operation while system met Trouble.

#### Objective of introducing 'Trouble'

- Not like airconditioning unit, Indoor Unit is generally operated in whole winter season without any system stoppina.

- If system found some problem, which is not critical to system operating for yielding heating energy, the system can temporarily continue in emergency mode operation with end user's decision.

#### · Classified Trouble

- Trouble is classified two levels according to the seriousness of the problem : Slight Trouble and Heavy trouble - Slight Trouble : Sensor trouble.

- Heavy trouble : Compressor cycle trouble.
- Option Trouble : a problem is found for option operation such as water tank heating. In this trouble, the troubled option is assumed as if it is not installed at the system.

#### · Emergency operation level

- When the system is faced with trouble, it stops and waits for user's decision. : Calling service center or starting emergency operation.
- To start emergency operation, user simply push ON / OFF button once more.
- Two different levels are prepared for emergency operation : High temperature cycle and low temperature cycle.
- In emergency operation mode, user can not adjust target temperature.

|                        | DIP Switch<br>(No. 4) | DIP Switch<br>(No. 4) Target<br>Leaving Water<br>Temperature |            | Target<br>Sanitary Water<br>Temperature |  |
|------------------------|-----------------------|--------------------------------------------------------------|------------|-----------------------------------------|--|
| High temperature cycle | OFF                   | 70°C(158°F)                                                  | 24°C(75°F) | 70°C(158°F)                             |  |
| Low temperature cycle  | ON                    | 50°C(122°F)                                                  | 19°C(66°F) | 50°C(122°F)                             |  |

- · Following features are permitted in emergency operation :
- Operation On/Off
- VIEW TEMP VIEW TEMP button(\*)
- Temperature adjusting button(\*\*) TEMP  $\nabla$
- WATER Sanitary water heating button
- (\*) : Temperature measured by failed sensor is displayed as '- -'.
- (\*\*): The unit is not turned on/off according to the setting temperature at the remote controller. It is turned on/off according to the thermostat signal.

#### Following features are NOT permitted in emergency operation :

- Operating mode (heating/ weather-dependent) selection OPER
- Ime scheduling
- SET TEMP button SET TEMP

#### · Duplicated trouble : Option trouble with Slight or Heavy trouble

If option trouble is occurred with slight (or heavy) trouble at the same time, the system puts higher priority to slight (or heavy) trouble and operates as if slight (or heavy) trouble is occurred.

Therefore, sometimes sanitary water heating can be impossible in emergency operation mode. When sanitary water is not warming up while emergency operation, please check whether the sanitary water sensor and related wiring are connected well or not.

#### · Emergency operation is not automatically restarted after main electricity power is reset.

In normal condition, the unit operating information is restored and automatically restarted after main electricity power is reset.

But in emergency operation, automatic re-start is prohibited to protect the unit.

Therefore, user must restart the unit after power reset when emergency operation has been running.

# THERMAV

#### Setting the DIP switch

- Set the DIP switch with the power turned off. If you change the setting when the power is on, the changed setting is not applied immediately. The changed setting is applied at the moment that the power is on.
- Instant indoor unit checking, data display mode, and forced oil collecting operation are used when theunits are running. If you don't have to use those functions after using them, restore the DIP switch setting.

#### Settings of outdoor unit

| Function                    | SW01B Setting                        | SW02B Setting                             | Remarks                                                                                                           |
|-----------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Standard                    | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | - Factory Shipping Setting                                                                                        |
| Short Pipe<br>Length        | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | - Set this function in case of<br>installing short pipe length                                                    |
| Long Pipe<br>Length         | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | <ul> <li>Set this function in case of<br/>installing long pipe length</li> </ul>                                  |
| Snow                        | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | - Set this function to prevent snowfall on outdoor unit.                                                          |
| Forced<br>Defrosting        | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | <ul> <li>Set this function to defrost<br/>heat exchanger of outdoor<br/>unit manually.</li> </ul>                 |
| Snow + Forced<br>Defrosting | ON<br>1 2 3 4 5 6 7<br>1 2 3 4 5 6 7 | ON<br>1 2 3 4 5 6 7<br>8 9 10 11 12 13 14 | - Set this function to defrost<br>heat exchanger of outdoor<br>unit and blow away snow<br>fallen on outdoor unit. |

# VI. Checking Key Components of Unit

1. The Phenomena from main Component

| Failure                         | 140 |
|---------------------------------|-----|
| 2. Flow Switch                  | 141 |
| 3. Compressor                   | 142 |
| 4. Fan Motor                    | 143 |
| 5. Electronic Expansion Valve   | 144 |
| 6. Inverter IPM Checking Method | 147 |



# THERMAY

Replacem

Test

# 1. The Phenomena from main Component Failure

| The | phenomena | from | main | component | failure |
|-----|-----------|------|------|-----------|---------|
|     |           |      |      |           |         |

| Component      | Phenomenon                                                   | Cause                                                              | Check method and Trouble shooting                                                                                                                               |
|----------------|--------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Not operating                                                | Motor insulation broken                                            | Check resistance between terminals and chassis                                                                                                                  |
|                |                                                              | Strainer clogged                                                   | Change strainer                                                                                                                                                 |
| Compressor     |                                                              | Oil leakage                                                        | Check oil amount after opening oil port                                                                                                                         |
|                | Stop during running                                          | Motor insulation failure                                           | Check resistance between terminals and chassis                                                                                                                  |
|                | Abnormal noise<br>during running                             | U-V-W misconnection                                                | Check compressor U-V-W connection                                                                                                                               |
| Outdoor<br>fan | High pressure error<br>in cooling mode<br>operation          | Motor failure,<br>bad ventilation around<br>outdoor heat exchanger | Check the fan operation to confirm proper<br>motor functioning. Switch OFF the outdoor<br>unit and remove obstacles, if any, around<br>the HEX. Check connector |
|                | Heating failure, fre-<br>quent defrosting                    | Bad connector contact                                              | Check connector                                                                                                                                                 |
| Outdoor<br>EEV | No operation sound<br>after switching ON<br>the power supply | Coil failure                                                       | Check resistance between terminals                                                                                                                              |
|                | Heating failure,<br>frozen outdoor heat<br>exchanger part    | EEV clogged                                                        | Service necessary                                                                                                                                               |
|                | Low pressure error<br>or discharge temper-<br>ature error    | EEV clogged                                                        | Service necessary                                                                                                                                               |

When system fault occurs, the error code is displayed on the indoor unit display or remote control display. The trouble shooting guide is available in the service manual.

When CH05/53/11 ERROR occurs, check if auto-addressing has done and communication wiring is ok.

# 2. Flow Switch

А

в

С

D



\*: How to identify? - Touch the terminal box (black plastic box at the water pump) of water pump and feel if the water pump is vibrating. If no vibration, the water pump is not operating. Also, you can see 'Water Pump Operating lcon( $\Omega_{Di}$ )' at control panel.

 Although there is not water flow inside water circuit, the flow switch detects as if water is flowing. It is due to electrically closed (or short) of flow switch or the contact of flow switch is mechanically stuck.
 Contact official After Service Center and replace the flow switch.
 Check the air vent. If there is air in the unit, it can display "CH14". Please remove the air by using the air vent.

Check if water inside water circuit is fully charged. Pressure gauge at the unit should indicate

150~200 kPa.

Also, as the hand of the pressure gauge is not react so fast according to water charging, check the pressure gauge again.

Otherwise, there can be water leakage inside water circuit. Examine if water circuit is completely sealed.

Although water is well flowing, the flow switch can not detect water flow. It is due to electrically open of flow switch or the contact of flow switch is mechanically broken.
Contact official After Service Center and replace the flow switch.

Read 'Checking Key Components of Unit – Water Pump' carefully to get more detail information.
 Contact official After Service Center and replace the water pump.

Also, check the water quality if there are particles that can yield locking at the shaft of the water pump.
Check the air vent. If there is air in the unit, it can display "CH14". Please remove the air by using the air vent.

### 3. Compressor

Check and ensure in following order when error related with the compressor or error related with power occurs during operation:

| No. | Checking Item                                                                      | Symptom                                                                                                                                         | Countermeasure                                                                                                                                                                                                                                                                                                                                           |  |
|-----|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | Is how long power on during operation?                                             | 1) Power on for 12 hours or more                                                                                                                | Go to No.2.                                                                                                                                                                                                                                                                                                                                              |  |
|     |                                                                                    | 2) Power on for 12 hours or less                                                                                                                | <ul> <li>Go to No.2 after applying<br/>power for designated time (12<br/>hours).</li> </ul>                                                                                                                                                                                                                                                              |  |
| 2   | Does failure appears again when starting operation?                                | 1) The compressor stops andsame<br>error appears again.                                                                                         | Check IPM may fail.                                                                                                                                                                                                                                                                                                                                      |  |
|     | Method to measure insulation<br>resistance<br>Method to measure coil<br>resistance | <ol> <li>If output voltage of the inverter is<br/>stably output.</li> </ol>                                                                     | Check coil resistor and insula-<br>tion resistor. If normal, restart<br>the unit. If same symptom<br>occurs, replace the compres-<br>sor.     Insulation resistor: 2MΩ or more     Coil resistor: at 20°C     Inverter     Infoor Outdoor<br>EPT525DBA GPT442MBA<br>U-V 0.520 Ohms 0.438 Ohms<br>U-W 0.516 Ohms 0.438 Ohms     V-W 0.516 Ohms 0.438 Ohms |  |
|     |                                                                                    | <ul> <li>3) If output voltage of the inverter is<br/>unstable or it is 0V.</li> <li>(When incapable of using a digi-<br/>tal tester)</li> </ul> | Check the IPM.<br>If the IPM is normal, replace<br>the inverter board.<br>Check coil resistor and insula-<br>tion resistor.                                                                                                                                                                                                                              |  |

#### [Cautions when measuring voltage and current of inverter power circuit]

Measuring values may differ depending on measuring tools and measuring circuits since voltage, current in the power supply or output side of the inverter has no same waveform.

Especially, output voltage changes when output voltage of the inverter has a pattern of pulse wave.

In addition, measuring values appear largely differently depending on measuring tools. Note

- 1) If using a movable tester when checking that output voltage of the inverter is constant (when comparing relative voltage between lines), always use an analog tester. Especially exercise particular caution if the output frequency of the inverter is low, when using a movable tester, where change of measured voltage values is large between other lines, when virtually same values appear actually or where there is danger to determine that failure of the inverter occurred.
- 2) You can use rectification voltmeter (->) if using commercial frequency tester when measuring output values of the inverter (when measuring absolute values). Accurate measuring values cannot be obtained with a general movable tester (For analog and digital mode).

# 4. Fan Motor

| Checking Item                                                  | Symptom                          | Countermeasure                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) The fan motor does not<br>operate.<br>Does failure appears | 1) When power supply is abnormal | <ul> <li>Modify connection status in front of or at the rear of<br/>the breaker, or if the power terminal console is at<br/>frosting condition.</li> </ul>                                                                                                                            |
| again when starting<br>operation?                              |                                  | Modify the power supply voltage is beyond speci-<br>fied scope.                                                                                                                                                                                                                       |
|                                                                | 2) For wrong wiring              | For following wiring.                                                                                                                                                                                                                                                                 |
| (2) Vibration of the fan                                       |                                  | 1. Check connection status.                                                                                                                                                                                                                                                           |
| motor is large.                                                |                                  | 2. Check contact of the connector.                                                                                                                                                                                                                                                    |
|                                                                |                                  | 3. Check that parts are firmly secured by tightening screws.                                                                                                                                                                                                                          |
|                                                                |                                  | 4. Check connection of polarity.                                                                                                                                                                                                                                                      |
|                                                                |                                  | 5. Check short circuit and grounding.                                                                                                                                                                                                                                                 |
|                                                                | 3) For failure of motor          | Measure winding resistance of the motor coils.                                                                                                                                                                                                                                        |
|                                                                | 4) For failure of circuit board  | Replace the circuit board in following procedures if<br>problems occur again when powering on and if there<br>are no matters equivalent to items as specified in<br>above 1) through 4).<br>(Carefully check both connector and grounding<br>wires when replacing the circuit board.) |
|                                                                |                                  | <ol> <li>Replace only fan control boards.<br/>If starting is done, it means that the fan control<br/>board has defect.</li> </ol>                                                                                                                                                     |
|                                                                |                                  | <ol> <li>Replace both fan control board and the main<br/>board.</li> <li>If starting is done, it means that the main board<br/>has defect.</li> </ol>                                                                                                                                 |
|                                                                |                                  | 3. If problems continue to occur even after counter-<br>measure of No.1 and No.2, it means that both<br>boards has defect.                                                                                                                                                            |
## 5. Electronic Expansion Valve



#### · Pulse signal output value and valve operation

|    | Output state |     |     |     |     |     |     |     |  |
|----|--------------|-----|-----|-----|-----|-----|-----|-----|--|
|    | 1            | 2   | 3   | 4   | 5   | 6   | 7   | 8   |  |
| ø1 | ON           | OFF | OFF | OFF | OFF | OFF | ON  | ON  |  |
| ø2 | ON           | ON  | ON  | OFF | OFF | OFF | OFF | OFF |  |
| ø3 | OFF          | OFF | ON  | ON  | ON  | OFF | OFF | OFF |  |
| ø4 | OFF          | OFF | OFF | OFF | ON  | ON  | ON  | OFF |  |

## Output pulse sequence

```
- In valve close state: 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 1
```

```
- In valve open state: 8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 8
```

1. If EEV open angle does not change, all of output phase will be OFF

 If output phase is different or continuously in the ON state, motor will not operate smoothly and start vibrating.

## · EEV valve operation



- At power ON, open angle signal of 1400 pulses output and valve position is set to (a) If valve operates smoothly, no noise and vibration occurs and if valve is closed, noise occurs.
- Noise from EEV can be confirmed by touching the EEV surface with a screw driver and listening the EEV noise.
- If liquid refrigerant is in EEV, the noise is lower.

### · EEV Coil and body(Outdoor unit)



## Remove and assemble the coil



Introduction

*тнегм*л**V** |47

3. Set multi tester to resistance mode. 4. If the value between P and N terminal of IPM is short(0Ω) or open(hundreds MΩ), PCB needs to be replaced.(IPM damaged)

5. Set the multi tester to diode mode.

6. In case measured value is different from the table, PCB needs to be replaced.(PCB damaged).





In case that the control box is opend and before checking electrical parts, it should be checked that the LED 01M, 02M turned off(wait 7 minutes after main power OFF), otherwise it may cause electrical shock.

| EEV locking                                 | 1.If EEV is locked, in no load state, the driving motor rotate,<br>and clicking sound always occurs                                                                                                                                                                                                                                             | Replace EEV                                         | Indoor<br>/ Outdoo<br>unit |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| EEV Motor coil<br>short or<br>misconnection | 1. Check the resistance between coil terminal<br>(red-white, red-yellow, red-orange, red-blue)     2. If the estimated resistance value is in 52 3<br>then the EEV is normal                                                                                                                                                                    | Replace EEV                                         | Outdoor<br>unit            |
|                                             | Check the resistance between coil terminal<br>(brown-white, brown-yellow, brown-orange, brown-blue)     If the estimated resistance value is in 150 10<br>then the EEV is normal                                                                                                                                                                | Replace EEV                                         | Indoor<br>unit             |
| Full closing<br>(valve leakage)             | <ol> <li>Operate indoor unit with FAN mode and operate another<br/>indoor unit with COOLING mode</li> <li>Check indoor unit(FAN mode) liquid pipe temperature<br/>(from operation monitor of outdoor unit control board)</li> <li>When fan rotate and EEV is fully closed, if there is any<br/>leakage, then the temperature is down</li> </ol> | If the amount of<br>leakage is much,<br>Replace EEV | Indoor<br>unit             |
|                                             | If estimated temperature is very low in comparison with<br>suction temperature which is displayed at remote<br>controller then the valve is not fully closed                                                                                                                                                                                    |                                                     |                            |

#### · EEV failure check method

| Failure mode                                | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Repair process                                      | Unit                        |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| Microcomputer<br>Driving circuit<br>failure | <ul> <li>1.Disconnect the EEV connector form control board and connect testing LED</li> <li> <ul> <li> <li> <li> <li> <li> <li> </li> <li> </li></li></li></li></li></li></ul> </li> <li> <ul> <li> <li> <ul> <li> <li> <li> <li> </li></li></li></li></ul> </li> <li> <li> <li> <li> </li></li></li></li></li></ul> </li> <li> <li> <li> <ul> <li> <li> <li> <li> </li></li></li></li></ul> </li> <li> <li> <li> <li> <li> </li></li></li></li></li></li></li></ul> <li> <li> <li> <li> <li> </li> <li> </li> <li> <li> <li> <li> <li> <li> </li> <li> </li> <li> <li> <li> <li> <li> <li> </li> <li> </li> <li> <li> <li> <li> <li> <li> <li> &lt;</li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li> | Check and replace<br>Indoor unit control<br>board   | Indoor<br>unit              |
| EEV locking                                 | 1.If EEV is locked, in no load state, the driving motor rotate,<br>and clicking sound always occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Replace EEV                                         | Indoor<br>/ Outdoor<br>unit |
| EEV Motor coil<br>short or<br>misconnection | <ol> <li>Check the resistance between coil terminal<br/>(red-white, red-yellow, red-orange, red-blue)</li> <li>If the estimated resistance value is in 52 3<br/>then the EEV is normal</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Replace EEV                                         | Outdoor<br>unit             |
|                                             | Check the resistance between coil terminal<br>(brown-white, brown-yellow, brown-orange, brown-blue)     If the estimated resistance value is in 150 10<br>then the EEV is normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Replace EEV                                         | Indoor<br>unit              |
| Full closing<br>(valve leakage)             | <ol> <li>Operate indoor unit with FAN mode and operate another<br/>indoor unit with COOLING mode</li> <li>Check indoor unit(FAN mode) liquid pipe temperature<br/>(from operation monitor of outdoor unit control board)</li> <li>When fan rotate and EEV is fully closed, if there is any<br/>leakage, then the temperature is down</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If the amount of<br>leakage is much,<br>Replace EEV | Indoor<br>unit              |



1. Wait until inverter PCB DC voltage is discharged after main power off. 2. Pull out CN-L1(R), CN-L2(S), CN-L3(T) and CN-COMP Connector

6. Inverter IPM Checking Method





<PFC&INV LED>

Replacement

## THERMAV

152

# VII. Replacement

- 1. Replacement Procedure for Compressor 150
- 2. Replacement Procedure for INVE PCB 151
- 3. Caution for Assembling Outdoor panels after Test Run

## 1. Replacement Procedure for Compressor

- 1. Carry out "Pump Out" function to accumulate refrigerant outside of outdoor unit or collect refrigerant by using refrigerant recovery unit.
- (Refer to DIP switch setting for Pump Out)
- 2. Remove the sound proof covering the faulty compressor, and disconnect the power
- Disconnect the brazing sections of suction pipe and discharge pipe by using brazing torch after the refrigerant has been pumped out or collected completely.
- 4. Remove three nut at cushion rubber section to take out the faulty compressor outside the unit.
- Install the new compressor in the unit.(Be sure to insert the cushion rubbers before tightening the fixing nut of compressor.)
- 6. Remove the rubber caps put on the suction and discharge pipe of the new compressor to release the sealing nitrogen gas.
- 7. Braze the suction and discharge pipe with brazing torch to the compressor.
- 8. If pump out is carried out, connect manifold to the charging port as shown right.
- 9. Conduct air tight test to check the piping system is free from leakage.
- 10. Connect power cable to the terminal board of compressor and cover the compressor with sound proof.
- 11. Conduct vacuum.
- (Refer to DIP switch setting for vacuum mode)
- 12. After completion of vacuum, if pump out is carried out, open the service valves. If recovery unit is used, charge refrigerant.
- 13. Carry out "Refrigerant Checking" function to check if amount of refrigerant is appropriate.

#### Indoor



Outdoor



## 2. Replacement Procedure for INVE PCB

- 1. Disassemble main PCB by unscrewing 2 screws. (Figure 1.)
- 2. Disassemble panel assembly (with cooling fan) by unscrewing 4 screws. (Figure 2.)
- 3. Replace INV PCB assembly. (Figure 3.)
- When assemble INV PCB assembly with control case, make sure that PCB case is inserted surely in the slit of control case.
- 4. Assemble panel assembly and main PCB.

#### Indoor







< Figure 1. >

< Figure 3-1. >









HERMAV

Introduction

< Figure 4. >

## 3. Caution for Assembling Outdoor panels after Test Run



## ■ Caution for Assembling Indoor Panels after replacement

When assemble the indoor panels after replacement, make sure that screws of top panel are assembled as shown figure. If screws are not assembled, it allows rain come into control box causing defect of unit.



## ■ Caution for Assembling Outdoor Panels after replacement

When assemble the outdoor panels after replacement, make sure that screws of top panel are assembled as shown figure.

If screws are not assembled, it allows rain come into control box causing defect of unit.



Introduction

## **2015 Trouble Shooting Guide Book**



 Publisher
 LG Electronics Air Conditioning & Energy Solution Company, SAC Engineering Division

 Issued date
 December 2015

 Web
 http://kic.lgeaircon.com

All rights are reserved by LG Electronics.

